English  |  正體中文  |  简体中文  |  Items with full text/Total items : 68069/68069 (100%)
Visitors : 23162309      Online Users : 345
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51136

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51136

    Title: Minimizers of Caffarelli-Kohn-Nirenberg Inequalities with the Singularity on the Boundary
    Authors: Chern,JL;Lin,CS
    Contributors: 數學系
    Date: 2010
    Issue Date: 2012-03-27 18:22:56 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Let Omega be a bounded smooth domain in R(N), N >= 3, and D(a)(1,2) (Omega) be the completion of C(0)(infinity) (Omega) with respect to the norm: ||u||(2)(a) = integral(Omega)|x|(-2a)|del u|(2)dx. The Caffarelli-Kohn-Nirenberg inequalities state that there is a constant C > 0 such that (integral(Omega)|x|(-bq)|u|(q)dx)(2/q) <= C integral(Omega)|x|(-2a)|del u|dx for u is an element of D(a)(1,2) (Omega) and [GRAPHICS] We prove the best constant for (0.1) [GRAPHICS] is always achieved in D(a)(1,2) (Omega) provided that 0 is an element of partial derivative Omega and the mean curvature H(0) < 0, where a, b satisfies (i) a < b < a + 1 and N >= 3, or (ii) b = a > 0 and N >= 4. If a = 0 and 1 > b > 0, then the result was proved by Ghoussoub and Robert [12].
    Appears in Collections:[數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明