中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51148
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142922      Online Users : 1359
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51148


    Title: Parallel Newton-Krylov-Schwarz algorithms for the three-dimensional Poisson-Boltzmann equation in numerical simulation of colloidal particle interactions
    Authors: Hwang,FN;Cai,SR;Shao,YL;Wu,JS
    Contributors: 數學系
    Keywords: CONFINED GEOMETRIES;SPHERES;MESH;ATTRACTIONS;FORCES;SCHEME
    Date: 2010
    Issue Date: 2012-03-27 18:23:17 (UTC+8)
    Publisher: 國立中央大學
    Abstract: We investigate fully parallel Newton-Krylov-Schwarz (NKS) algorithms for solving the large sparse nonlinear systems of equations arising from the finite element discretization of the three-dimensional Poisson-Boltzmann equation (PBE), which is often used to describe the colloidal phenomena of an electric double layer around charged objects in colloidal and interfacial science. The NKS algorithm employs an inexact Newton method with backtracking (INB) as the nonlinear solver in conjunction with a Krylov subspace method as the linear solver for the corresponding Jacobian system. An overlapping Schwarz method as a preconditioner to accelerate the convergence of the linear solver. Two test cases including two isolated charged particles and two colloidal particles in a cylindrical pore are used as benchmark problems to validate the correctness of our parallel NKS-based PBE solver. In addition, a truly three-dimensional case, which models the interaction between two charged spherical particles within a rough charged micro-capillary, is simulated to demonstrate the applicability of our PBE solver to handle a problem with complex geometry. Finally, based on the result obtained from a PC cluster of parallel machines, we show numerically that NKS is quite suitable for the numerical simulation of interaction between colloidal particles, since NKS is robust in the sense that INB is able to converge within a small number of iterations regardless of the geometry, the mesh size, the number of processors. With help of an additive preconditioned Krylov subspace method NKS achieves parallel efficiency of 71% or better on up to a hundred processors for a 3D problem with 5 million unknowns. (C) 2010 Elsevier B.V. All rights reserved.
    Relation: COMPUTER PHYSICS COMMUNICATIONS
    Appears in Collections:[Department of Mathematics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML451View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明