中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51161
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41763772      線上人數 : 2168
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51161


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51161


    題名: TWO-LEVEL NONLINEAR ELIMINATION BASED PRECONDITIONERS FOR INEXACT NEWTON METHODS WITH APPLICATION IN SHOCKED DUCT FLOWCALCULATION
    作者: Hwang,FN;Lin,HL;Cai,XC
    貢獻者: 數學系
    日期: 2010
    上傳時間: 2012-03-27 18:23:37 (UTC+8)
    出版者: 國立中央大學
    摘要: The class of Newton methods is popular for solving large sparse nonlinear algebraic systems of equations arising from the discretization of partial differential equations. The method offers superlinear or quadratic convergence when the solution is sufficiently smooth and the initial guess is close to the desired solution. However, in many practical problems, the solution may exhibit some non-smoothness in part of the computational domain, due to, for example, the presence of a shock wave. In this situation, the convergence rate of Newton-type methods deteriorates considerably. In this paper, we introduce a two-level nonlinear elimination algorithm, in which we first identify a subset of equations that prevents Newton from having the fast convergence and then iteratively eliminate them from the global nonlinear system of equations. We show that such implicit nonlinear elimination restores the fast convergence for problems with local non-smoothness. As an example, we study a compressible transonic flow in a shocked duct.
    關聯: ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS
    顯示於類別:[數學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML497檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明