English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43994714      線上人數 : 1637
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51185


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51185


    題名: ALGEBRAIC RELATIONS AMONG PERIODS AND LOGARITHMS OF RANK 2 DRINFELD MODULES
    作者: Chang,CY;Papanikolas,MA
    貢獻者: 數學系
    關鍵詞: LINEAR INDEPENDENCE;GAMMA-VALUES;TRANSCENDENCE;MOTIVES
    日期: 2011
    上傳時間: 2012-03-27 18:24:21 (UTC+8)
    出版者: 國立中央大學
    摘要: For any rank 2 Drinfeld module rho defined over an algebraic function field, we consider its period matrix P(rho), which is analogous to the period matrix of an elliptic curve defined over a number field. Suppose that the characteristic of the finite field F(q) is odd and that rho does not have complex multiplication. We show that the transcendence degree of the field generated by the entries of P(rho) over F(q)(theta) is 4. As a consequence, we show also the algebraic independence of Drinfeld logarithms of algebraic functions which are linearly independent over F(q)(theta).
    關聯: AMERICAN JOURNAL OF MATHEMATICS
    顯示於類別:[數學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML706檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明