English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42120010      線上人數 : 1280
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51217


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51217


    題名: THE EFM APPROACH FOR SINGLE-INDEX MODELS
    作者: Cui,X;Hardle,WK;Zhu,LX
    貢獻者: 數學系
    關鍵詞: GENERALIZED LINEAR-MODELS;DIMENSION REDUCTION;SEMIPARAMETRIC ESTIMATION;REGRESSION;PREDICTORS
    日期: 2011
    上傳時間: 2012-03-27 18:25:12 (UTC+8)
    出版者: 國立中央大學
    摘要: Single-index models are natural extensions of linear models and circumvent the so-called curse of dimensionality. They are becoming increasingly popular in many scientific fields including biostatistics, medicine, economics and financial econometrics. Estimating and testing the model index coefficients beta is one of the most important objectives in the statistical analysis. However, the commonly used assumption on the index coefficients, parallel to beta parallel to = 1, represents a nonregular problem: the true index is on the boundary of the unit ball. In this paper we introduce the EFM approach, a method of estimating functions, to study the single-index model. The procedure is to first relax the equality constraint to one with (d - 1) components of beta lying in an open unit ball, and then to construct the associated (d - 1) estimating functions by projecting the score function to the linear space spanned by the residuals with the unknown link being estimated by kernel estimating functions. The root-n consistency and asymptotic normality for the estimator obtained from solving the resulting estimating equations are achieved, and a Wilks type theorem for testing the index is demonstrated. A noticeable result we obtain is that our estimator for beta has smaller or equal limiting variance than the estimator of Carroll et al. [J. Amer Statist. Assoc. 92 (1997) 447-4891. A fixed-point iterative scheme for computing this estimator is proposed. This algorithm only involves one-dimensional nonparametric smoothers, thereby avoiding the data sparsity problem caused by high model dimensionality. Numerical studies based on simulation and on applications suggest that this new estimating system is quite powerful and easy to implement.
    關聯: ANNALS OF STATISTICS
    顯示於類別:[數學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML521檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明