The reciprocal virtue of peer-to-peer networking has stimulated an explosion of peer population and service capacity, ensuring rapid content distribution in peer-to-peer networks. Critical issues such as peer churn, free riding, and skewed workload significantly affect performance results such as service agility, fairness, and resource utilization. To resolve these problems systematically, this study proposes a peer assignment scheme that supports fair peer-to-peer file sharing applications. The proposed scheme exploits the peer duality of both server-oriented peer capacity and client-oriented peer contribution. Accordingly, the system server can prioritize download requests and appropriately assign server peers to uploading file objects. Several functional extensions, including peer substitution and elimination, bandwidth adjustment, and distributed modification, help cope with subtle situations of service starvation and download blocking, and hence make the system design robust and amenable. Simulation results show this design is examined under both centralized and distributed peer-to-peer environments. Performance results confirm that the proposed mechanisms are simple but effective in maintaining service agility and fairness, without loss of overall service capacity in peer-to-peer files sharing systems.
關聯:
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS