English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23073987      Online Users : 361
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51507


    Title: A hub-attachment based method to detect functional modules from confidence-scored protein interactions and expression profiles
    Authors: Chin,CH;Chen,SH;Ho,CW;Ko,MT;Lin,CY
    Contributors: 資訊工程學系
    Date: 2010
    Issue Date: 2012-03-27 18:54:45 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Background: Many research results show that the biological systems are composed of functional modules. Members in the same module usually have common functions. This is useful information to understand how biological systems work. Therefore, detecting functional modules is an important research topic in the post-genome era. One of functional module detecting methods is to find dense regions in Protein-Protein Interaction (PPI) networks. Most of current methods neglect confidence-scores of interactions, and pay little attention on using gene expression data to improve their results. Results: In this paper, we propose a novel hub-attachment based method to detect functional modules from confidence-scored protein interactions and expression profiles, and we name it HUNTER. Our method not only can extract functional modules from a weighted PPI network, but also use gene expression data as optional input to increase the quality of outcomes. Using HUNTER on yeast data, we found it can discover more novel components related with RNA polymerase complex than those existed methods from yeast interactome. And these new components show the close relationship with polymerase after functional analysis on Gene Ontology. Conclusion: A C++ implementation of our prediction method, dataset and supplementary material are available at http://hub.iis.sinica.edu.tw/Hunter/. Our proposed HUNTER method has been applied on yeast data, and the empirical results show that our method can accurately identify functional modules. Such useful application derived from our algorithm can reconstruct the biological machinery, identify undiscovered components and decipher common sub-modules inside these complexes like RNA polymerases I, II, III.
    Relation: BMC BIOINFORMATICS
    Appears in Collections:[資訊工程學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML277View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明