English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41635065      線上人數 : 2278
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51516


    題名: A Novel Spectral Clustering Method Based on Pairwise Distance Matrix
    作者: Chin,CF;Shih,ACC;Fan,KC
    貢獻者: 資訊工程學系
    日期: 2010
    上傳時間: 2012-03-27 18:54:58 (UTC+8)
    出版者: 國立中央大學
    摘要: In general, the similarity measure is indispensable for most traditional spectral clustering algorithms since these algorithms typically begin with the pairwise similarity matrix of a given dataset. However, a general type of input for most clustering applications is the pairwise distance matrix. In this paper, we propose a distance-based spectral clustering method which makes no assumption on regarding both the suitable similarity measure and the prior-knowledge of cluster number. The kernel of distance-based spectral clustering is that the symmetric LoG weighted matrix constructed by applying the Laplace operator to the pairwise distance matrix. The main difference from the traditional spectral clustering is that the pairwise distance matrix can be directly employed without transformation as a similarity pairwise matrix in advance. Moreover, the inter-cluster structure is embedded and the intra-cluster pairwise relationships are maximized in the proposed method to increase the discrimination capability on extracting clusters. Experiments were conducted on different types of test datasets and the results demonstrate the correctness of the extracted clusters. Furthermore, the proposed method is also verified to be robust to noisy datasets.
    關聯: JOURNAL OF INFORMATION SCIENCE AND ENGINEERING
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML374檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明