English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78852/78852 (100%)
造訪人次 : 37998707      線上人數 : 849
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51524


    題名: Reduced symmetric self-constructing fuzzy neural network beamforming detectors
    作者: Chang,YJ;Ho,CL
    貢獻者: 通訊工程學系
    關鍵詞: DECISION-FEEDBACK EQUALIZER;NONLINEAR CHANNEL EQUALIZER;ANTENNA-ARRAY;SYSTEMS;ALGORITHM;DESIGN
    日期: 2011
    上傳時間: 2012-03-27 18:55:16 (UTC+8)
    出版者: 國立中央大學
    摘要: Beamforming technology has been widely used in smart antenna systems that can increase the user's capacity and coverage in modern communication products. In this study, a powerful reduced symmetric self-constructing fuzzy neural network (RS-SCFNN) beamforming detector is proposed for multi-antenna-assisted systems. A novel training algorithm for the RS-SCFNN beamformer is proposed based on clustering of array input vectors and an adaptive minimum bit-error rate method. An inherent symmetric property of the array input signal space is exploited to make training procedure of RS-SCFNN more efficient than that of standard SCFNN. In addition, the required amount of fuzzy rules can be greatly reduced in the RS-SCFNN structure. Simulation results demonstrate that RS-SCFNN beamformer provides superior performance to the classical linear ones and the other non-linear ones (including symmetric radial basis function, SCFNN and S-SCFNN), especially when supporting a large amount of users in the rank-deficient multi-antenna-assisted system.
    關聯: IET MICROWAVES ANTENNAS & PROPAGATION
    顯示於類別:[通訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML708檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明