English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23077469      Online Users : 600
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51542


    Title: Environment classification and hierarchical lane detection for structured and unstructured roads
    Authors: Cheng,HY;Yu,CC;Tseng,CC;Fan,KC;Hwang,JN;Jeng,BS
    Contributors: 資訊工程學系
    Date: 2010
    Issue Date: 2012-03-27 18:55:40 (UTC+8)
    Publisher: 國立中央大學
    Abstract: This study presents a hierarchical lane detection system with the ability to deal with both structured and unstructured roads. The proposed system classifies the environment first before applying suitable algorithms for different types of roads. Instead of dealing with all situations with one complicated algorithm, this hierarchical architecture makes it possible to achieve high accuracy with relatively simple and efficient lane detection algorithms. For environment classification, pixels with lane-marking colours are extracted as feature points. Eigenvalue decomposition regularised discriminant analysis is utilised in model selection and maximum likelihood estimation of Gaussian parameters in high-dimensional feature space. For structured roads, the extracted feature points are reused for lane detection. Moving vehicles that have the same colours as the lane markings are eliminated from the feature points before the authors perform angles of inclination and turning points searching to locate the lane boundaries. For unstructured roads, mean-shift segmentation is applied to divide the scene into regions. Possible candidate pairs for road boundaries are elected from the region boundaries, and Bayes rule is used to choose the most probable candidate pairs as the lane boundaries. The experimental results have shown that the classification mechanism can effectively choose the correct lane detection algorithm according to the current environment setting, and the system is able to robustly find the lane boundaries on different types of roads in various weather conditions.
    Relation: IET COMPUTER VISION
    Appears in Collections:[資訊工程學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML273View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明