English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41633944      線上人數 : 3543
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51628


    題名: Face Recognition Using Nearest Feature Space Embedding
    作者: Chen,YN;Han,CC;Wang,CT;Fan,KC
    貢獻者: 資訊工程學系
    關鍵詞: NONPARAMETRIC DISCRIMINANT-ANALYSIS;NONLINEAR DIMENSIONALITY REDUCTION;FEATURE LINE METHOD;CLASSIFICATION;PROJECTION;FRAMEWORK;PCA;LAPLACIANFACES;RETRIEVAL;MATRIX
    日期: 2011
    上傳時間: 2012-03-27 18:57:54 (UTC+8)
    出版者: 國立中央大學
    摘要: Face recognition algorithms often have to solve problems such as facial pose, illumination, and expression (PIE). To reduce the impacts, many researchers have been trying to find the best discriminant transformation in eigenspaces, either linear or nonlinear, to obtain better recognition results. Various researchers have also designed novel matching algorithms to reduce the PIE effects. In this study, a nearest feature space embedding (called NFS embedding) algorithm is proposed for face recognition. The distance between a point and the nearest feature line (NFL) or the NFS is embedded in the transformation through the discriminant analysis. Three factors, including class separability, neighborhood structure preservation, and NFS measurement, were considered to find the most effective and discriminating transformation in eigenspaces. The proposed method was evaluated by several benchmark databases and compared with several state-of-the-art algorithms. According to the compared results, the proposed method outperformed the other algorithms.
    關聯: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML425檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明