English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23103053      Online Users : 679
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51630

    Title: G-STAR: Geometric STAteless Routing for 3-D wireless sensor networks
    Authors: Sun,MT;Sakai,K;Hamilton,BR;Ku,WS;Ma,XL
    Contributors: 資訊工程學系
    Date: 2011
    Issue Date: 2012-03-27 18:57:57 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 3-D aerial and underwater sensor networks have found various applications in natural habitat monitoring, weather/earthquake forecast, terrorist intrusion detection, and homeland security. The resource-constrained and dynamic nature of such networks has made the stateless routing protocol with only local information a preferable choice. However, most of the existing routing protocols require sensor nodes to either proactively maintain the state information or flood the network from time to time. The existing stateless geometric routing protocols either fail to work in 3-D environments or have tendency to produce lengthy paths. In this paper, we propose a novel routing protocol, namely Geometric STAteless Routing (G-STAR) for 3-D networks. The main idea of G-STAR is to distributively build a location-based tree and find a path dynamically. G-STAR not only generalizes the notion of geographic routing from two modes to one mode, but also guarantees packet delivery even when the location information of some nodes is either inaccurate or simply unavailable regardless of the uses of virtual coordinates. In addition, we develop a light-weight path pruning algorithm, namely Branch Pruning (BP), that can be combined with G-STAR to enhance the routing performance with very little overhead. The extensive simulation results by ns-2 have shown that the proposed routing protocols perform significantly better than the existing 3-D geometric routing protocols in terms of delivery rate with competitive hop stretch. We conclude that the proposed protocols serve as a strong candidate for future high-dimensional sensor networks. (C) 2010 Elsevier B.V. All rights reserved.
    Relation: AD HOC NETWORKS
    Appears in Collections:[資訊工程學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明