中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51749
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 67621/67621 (100%)
造访人次 : 23051137      在线人数 : 236
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51749


    题名: Compactness rate as a rule selection index based on Rough Set Theory to improve data analysis for personal investment portfolios
    作者: Shyng,JY;Shieh,HM;Tzeng,GH
    贡献者: 企業管理學系
    关键词: CLASSIFICATION RULES
    日期: 2011
    上传时间: 2012-03-27 19:04:24 (UTC+8)
    出版者: 國立中央大學
    摘要: This study proposes a selection index technique, namely a compactness rate based on Rough Set Theory (RST), for improving data analysis, eliminating data amount and reducing the number of decision rule. This study uses an empirical real-case involving a personal investment portfolio to demonstrate the proposed method. The presented case includes 75 rules generated by the RST. The rules are vague and fragmentary, making it very difficult to interpret the information. Many rules have the same strength and number of support objects and condition parts. These are creating a critical problem for decision making. The new method proposed in this study not only enables the selection of interesting rules, but it also reduces the data amount, and offers alternative strategies that can help decision-makers analyze data. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
    關聯: APPLIED SOFT COMPUTING
    显示于类别:[企業管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML496检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈  - 隱私權政策聲明