English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119765      線上人數 : 1454
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51838


    題名: Robust likelihood inferences about regression parameters for general bivariate continuous data
    作者: Tsou,TS
    貢獻者: 統計研究所
    日期: 2010
    上傳時間: 2012-03-27 19:07:23 (UTC+8)
    出版者: 國立中央大學
    摘要: This paper introduces a way of modifying the bivariate normal likelihood function. One can use the adjusted likelihood to generate valid likelihood inferences for the regression parameter of interest, even if the bivariate normal assumption is fallacious. The retained asymptotic legitimacy requires no knowledge of the true underlying joint distributions so long as their second moments exist. The extension to the multivariate situations is straightforward in theory and yet appears to be arduous computationally. Nevertheless, it is illustrated that the implementation of this seemingly sophisticated procedure is almost effortless needing only outputs from existing statistical software. The efficacy of the proposed parametric approach is demonstrated via simulations.
    關聯: METRIKA
    顯示於類別:[統計研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML415檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明