English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42803005      線上人數 : 963
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51874


    題名: Likelihood inferences for the link function without knowing the true underlying distributions
    作者: Tsou,TS
    貢獻者: 統計研究所
    關鍵詞: LOGISTIC-REGRESSION MODELS;OF-FIT;STATISTICAL EVIDENCE;PARAMETRIC ROBUST;GRAPHICAL METHODS
    日期: 2011
    上傳時間: 2012-03-27 19:08:06 (UTC+8)
    出版者: 國立中央大學
    摘要: This article is concerned with inference about link function in generalized linear models. A parametric and yet robust likelihood approach is introduced to accomplish the intended goal. More specifically, it is demonstrated that one can convert normal and gamma likelihoods into robust likelihood functions for the link function. The asymptotic validity of the robust likelihood requires only the existence of the second moments of the underlying distributions. The application of this novel robust likelihood method is demonstrated on the Box-Cox transformation. Simulation studies and real data analysis are provided to demonstrate the efficacy of the new parametric robust procedures.
    關聯: COMPUTATIONAL STATISTICS
    顯示於類別:[統計研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML656檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明