中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51876
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41645640      Online Users : 1472
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51876


    Title: Robust likelihood inference for regression parameters in partially linear models
    Authors: Shen,CW;Tsou,TS;Balakrishnan,N
    Contributors: 統計研究所
    Keywords: ESTIMATOR
    Date: 2011
    Issue Date: 2012-03-27 19:08:08 (UTC+8)
    Publisher: 國立中央大學
    Abstract: A robust likelihood approach is proposed for inference about regression parameters in partially-linear models. More specifically, normality is adopted as the working model and is properly corrected to accomplish the objective. Knowledge about the true underlying random mechanism is not required for the proposed method. Simulations and illustrative examples demonstrate the usefulness of the proposed robust likelihood method, even in irregular situations caused by the components of the nonparametric smooth function in partially-linear models. (C) 2010 Elsevier B.V. All rights reserved.
    Relation: COMPUTATIONAL STATISTICS & DATA ANALYSIS
    Appears in Collections:[Graduate Institute of Statistics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML701View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明