English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41634037      線上人數 : 3473
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51902


    題名: A novel fuzzy c-means method for classifying heartbeat cases from ECG signals
    作者: Yeh,YC;Wang,WJ;Chiou,CW
    貢獻者: 電機工程學系
    關鍵詞: NEURAL-NETWORK;CLASSIFICATION;DIAGNOSIS
    日期: 2010
    上傳時間: 2012-03-28 10:09:59 (UTC+8)
    出版者: 國立中央大學
    摘要: This study proposes a simple and reliable method termed the fuzzy c-means method for classifying the heartbeat cases from electrocardiogram (ECG) signals. The proposed method has the advantages of good detection results, no complex mathematic computations, low memory space and low time complexity. The FCMM can accurately classify and distinguish the difference between normal heartbeats and abnormal heartbeats. Classifying the heartbeat cases from ECG signals consists of four main procedures: (i) Procedure-DOM for detecting QRS waveform using the Difference Operation Method; (ii) qualitative features stage (Procedure-ROM) for qualitative feature selection using the Range-Overlaps Method on ECG signals; (iii) Procedure-CCC is used to compute the cluster center for each class; and (iv) Procedure-HCD is used to determine the heartbeat case for the patient. The experiments show that the sensitivities were 98.28%, 90.35%, 86.97%, 92.19%, and 94.86% for NORM. LBBB, RBBB, VPC and APC, respectively. The total classification accuracy was approximately 93.57%. (C) 2010 Elsevier Ltd. All rights reserved.
    關聯: MEASUREMENT
    顯示於類別:[電機工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML295檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明