In this paper, an active control scheme is designed for the hybrid direct methanol fuel cell (DMFC) system to achieve the following three objectives simultaneously: (i) maximize the power produced by the DMFC stack in the stable operation as high loading (for avoiding the operation of DMFC in diffusion region), (ii) keep the power produced by the DMFC stack with the high efficiency as low loading, (iii) prevent the problem of methanol crossover at a very low load. Considering the characteristics of DMFC stack during actual operation, the states V(P) (t) and (V) over dot(P) (1) are utilized as the linguistic variables. Also considering the fuel efficiency of DMFC stack eta(fuel) as the linguistic variable, the active control scheme is designed to achieve the above multiple objectives. To clarify the reliability and stability of the proposed control scheme, an experiment is performed. Its results show that the proposed control scheme can achieve above multiple objectives efficiently.