English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41632661      線上人數 : 3737
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/53662


    題名: 以鏈結串列搜尋車輛偵測器遺漏值最佳填補方式;Searching the Optimal Data Imputation Method for Missing Values of Vehicle Detector Using Linked List
    作者: 林岳威;Lin,Yue-Wei
    貢獻者: 土木工程研究所
    關鍵詞: 最佳填補組合;鏈結串列;Linked List;optimal solution;Missing Value
    日期: 2012-08-24
    上傳時間: 2012-09-11 18:05:16 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究主要目的為針對雪山隧道路段車輛偵測器資料發生遺漏時進行即時填補。填補方法有空間填補與時間填補兩大種類,因為在填補過程中不考慮本身歷史資料與鄰近偵測器歷史資料投入填補,所以是採用空間填補方式。當路段上有數組偵測器資料發生遺漏時,必須利用剩餘完整偵測器來當作投入填補的資源。透過鏈結串列的應用,將遺漏偵測器與完整偵測器區隔開,分別建立出資料遺漏偵測器串列與資料完整偵測器串列。最後對遺漏偵測器依序進行填補,其填補組合是利用完整偵測器依照投入組數的不同透過組合方法將所有填補組合計算得出。最後從這些填補組合中搜尋出各遺漏偵測器的最佳填補組合。  結果顯示,依照遺漏偵測器數量不同,其填補組合的數量也不同。但因為在4組以上偵測器投入填補的填補組合數量過多又填補績效以隨機方式假設,故4組以上的局部最佳填補組合的填補績效值皆為5%居多。接著再從這些局部最佳填補組合選擇最多組偵測器投入作為遺漏偵測器的最佳填補組合。To search for the optimal imputation of Vehicle Detector, this paper using the Data Structure-Linked Lists to search the optimal solution of imputation of Vehicle Detector. We have to establish three the essential VD Lists and the numbers of data imputation Lists. Using the Lists to find the optimal solution of missing values VD.First, use the 35 VD to establish the original VD Lists and copy the data of the original VD Lists to establish another List, it’s call data complete lists. Then we input the VD of missing values to delete VD of data complete lists, at the same time, use the VD of missing values to establish missing data lists. And then using combination of statistics of data complete lists to find the imputation mode, MAPE use the random to decide. Use the imputation mode to establish the numbers of data imputation Lists. Finally , we can search the local optimal solution from the data imputation Lists, and find the optimal solution from those local optimal solution.The result showed that every VD of missing value the local optimal solutions MAPE are 5%, because the imputation mode is too much and the MAPE is random to decide. But we have to find the optimal solution of missing value VD, so according to Literature, we choose the most VD imputation Data is optimal solution.
    顯示於類別:[土木工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML774檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明