中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/53695
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42446791      線上人數 : 892
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/53695


    題名: 醫療載具的單眼視覺行人偵測;Monocular-vision Pedestrian Detection for Medical Vehicles
    作者: 陳卓仁;Chen,Gho-Jen
    貢獻者: 生物醫學工程研究所
    關鍵詞: 距離轉換;行人偵測;梯度方向分佈圖;pedestrian detection;distance transform;histograms of oriented gradients
    日期: 2012-07-19
    上傳時間: 2012-09-11 18:11:13 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著交通工具使用的頻繁與流行,交通事故成為廣受國人注意的安全議題。交通事故中若波及行人,不論對駕駛人或行人都將造成相當嚴重的損傷。本研究中針對醫療載具;例如,救護用車、殘障專用車輛、輪椅、輔助行動工具等。這類載具的駕駛人需要投注更多專注力在駕駛或是本身注意能力、反應能力較一般人弱勢,我們在本研究中提出一個使用單眼視覺的行人偵測系統,並應用於複雜的校園、街道環境中,以避免發生與行人碰撞的事故。在本論文中,我們以梯度方向分佈圖 (Histograms of oriented gradients, HOG) 作為表達行人特徵的方式,行人分類學習步驟中,我們引入支援向量學習機 (Support Vector Machine, SVM) 作為學習分類器。基於單眼視覺的行人偵測需要產生大量的候選行人視窗供給分類器作判別,然而,HOG 特徵是以累積視窗內像素點各方向的邊強度取得,當候選視窗數量眾多,累積所需得執行時間將會大幅升高,本研究使用行人偵測帶 (pedestrian detection strip, PDS) 作為第一步蒐尋包含行人位置的 ROI 區塊,再引入距離轉換 (distance transform, DT) 模板作第一步的候選行人視窗篩選,通過初步篩選後的視窗再交給 SVM 作最後的判定。在行人偵測的結果方面,在巷弄間複雜的背景、校園內行人數多的情況下、以及光照不同的情形下,交給 SVM 分類的行人視窗辨識效果都有 94% 以上的正確率,而在一般的情況下影格中出現行人的偵測率也約有 80% 以上,而每個影格中出現 false positive 的偵測錯誤也指有 0.3 個左右。With frequent and popular use of transport, traffic accidents become great issues for people to pay attention. If there were pedestrians injured in an accident, whether drivers or pedestrians will cause very serious loss. In this study, we pay more attention to some medical vehicles, such as ambulance, disabled vehicle, wheelchair and action assistance tools. For those vehicles, the drivers should pay more attention in the driving or the drivers would have weaker reaction ability than a normal person. We proposed a pedestrian detection system using monocular vision. To avoid collision accident, we applied our system to some complex environment, such as campus and street situation. In this paper, we use Histograms of oriented gradients (HOG) as a way of pedestrian characteristics expression. We introduce the support vector machine (SVM) for pedestrian classification learning. The classifier training has to generate many candidate of pedestrian window. However, HOG features are accumulated by each direction of edge intensity. It will cause the time of process rising while the number of candidate become larger. The research employs the pedestrian detection strip (PDS) as the first seeking-step of interesting region. Then we using distance transform (DT) template as selection function to sift the candidate windows of pedestrian out. Finally we constructed the HOG feature of each window and used the SVM classifier for final judgment. In the results, we have More than 94% of accuracy with SVM classifier of pedestrian detection. Other side, our detection rate of pedestrian is above 80% and the detection error of false positive in each frame is mean about 0.3 / frame.
    顯示於類別:[生物醫學工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML770檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明