中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/54017
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42142523      在线人数 : 1135
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/54017


    题名: Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan;Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan
    作者: 黃英;Anh,Hoang
    贡献者: 水文與海洋科學研究所
    关键词: Suspended sediment concentration;EMD method;Stokes drift.;Suspended sediment concentration;EMD method;Stokes drift.
    日期: 2012-08-29
    上传时间: 2012-09-11 18:26:15 (UTC+8)
    出版者: 國立中央大學
    摘要: Factors that affect the resuspension of bottom sediment in the coastal zone of North-western coast of Taiwan were investigated. Field observations using ADCPs were carried out in 3 durations (Jan 14th – Feb 01st 2011; May 26th – June 21st 2011; and Feb 21st – April 13th 2012) to collect wave and current data. Besides, wind was recorded from anemometer equipped on the flux tower; hydrological data were recorded from CTD. Suspended sediment concentration (SSC) near bottom is estimated using ADCP echo intensity. SSC and current are decomposed into several components to elaborate the impact of currents components to SSC.The temporal variation of SSC is decomposed into several Intrinsic Mode Functions (IMFs) using Empirical Mode Decompositon (EMD). All the low-frequency IMFs are composed and referred as long-term SSC while all the high-frequency IMFs are composed and referred as short-term SSC. Observed current is decomposed into tidal current and non-tidal current using Harmonic Analysis. Stokes drift which represents for wave-induced current were estimated using Lentz’s formula or Ardhuin’s formula. Results from Ardhuin’s formula are adopted for following analysis. The non-Stokes residual current is then regarded as induced by wind. Inter-comparisons of the decomposed SSCs with tidal currents, wave-induced currents, non-Stokes residual currents were made. A high correlation is found between long-term SSC and wave while short-term SSC and tidal current are also in a good agreement. It is noted that, a semi-diurnal oscillation of water density is identified synchronized with the enhancement of SSC. These oscillations might owe to the fluctuation of river plume or the internal wave. During the rainfall, the sediment discharge from the creeks might be considerable. The fluctuation of fluvial water due to strong tide would induce the oscillation of water density at one fixed location. In the other hand, this water density oscillation is likely the internal wave oscillation which is quite possible in the inner shelf. So internal wave might also contribute to the resuspension but evidences of internal wave are weak. More observation is needed for further study to consolidate the presence of internal wave in this coastal region.Factors that affect the resuspension of bottom sediment in the coastal zone of North-western coast of Taiwan were investigated. Field observations using ADCPs were carried out in 3 durations (Jan 14th – Feb 01st 2011; May 26th – June 21st 2011; and Feb 21st – April 13th 2012) to collect wave and current data. Besides, wind was recorded from anemometer equipped on the flux tower; hydrological data were recorded from CTD. Suspended sediment concentration (SSC) near bottom is estimated using ADCP echo intensity. SSC and current are decomposed into several components to elaborate the impact of currents components to SSC.The temporal variation of SSC is decomposed into several Intrinsic Mode Functions (IMFs) using Empirical Mode Decompositon (EMD). All the low-frequency IMFs are composed and referred as long-term SSC while all the high-frequency IMFs are composed and referred as short-term SSC. Observed current is decomposed into tidal current and non-tidal current using Harmonic Analysis. Stokes drift which represents for wave-induced current were estimated using Lentz’s formula or Ardhuin’s formula. Results from Ardhuin’s formula are adopted for following analysis. The non-Stokes residual current is then regarded as induced by wind. Inter-comparisons of the decomposed SSCs with tidal currents, wave-induced currents, non-Stokes residual currents were made. A high correlation is found between long-term SSC and wave while short-term SSC and tidal current are also in a good agreement. It is noted that, a semi-diurnal oscillation of water density is identified synchronized with the enhancement of SSC. These oscillations might owe to the fluctuation of river plume or the internal wave. During the rainfall, the sediment discharge from the creeks might be considerable. The fluctuation of fluvial water due to strong tide would induce the oscillation of water density at one fixed location. In the other hand, this water density oscillation is likely the internal wave oscillation which is quite possible in the inner shelf. So internal wave might also contribute to the resuspension but evidences of internal wave are weak. More observation is needed for further study to consolidate the presence of internal wave in this coastal region.
    显示于类别:[水文與海洋科學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1118检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明