中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/54018
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78937/78937 (100%)
Visitors : 39425337      Online Users : 392
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/54018


    Title: The directional spreading of surface wave in the shallow water zone;The directional spreading of surface wave in the shallow water zone
    Authors: 盧光輝;Lu,Quang Huy
    Contributors: 水文與海洋科學研究所
    Keywords: shallow water zone;wave spectrum;directional spreading;wave spectrum;directional spreading;shallow water zone
    Date: 2012-08-29
    Issue Date: 2012-09-11 18:26:16 (UTC+8)
    Publisher: 國立中央大學
    Abstract: The aim of this study is to investigate the characteristics of the directional spreading when waves propagate into the shallow water zone, North-West in Taiwan. Water elevation data from 3 ADCPs (Acoustic Doppler Current Profiler) deployments during 15 Jan – 1 Feb (2011); 26 May – 22 Jun (2011) and 21 Feb – 16 Mar (2012) were recorded and used to calculate the directional spreading. The three experiments were in Yongan observation field (the 1st at 2 stations; the 2nd at 3 stations; and the 3rd at 2 stations). The Extended Maximum Likelihood Method (EMLM) was applied in this study by DIWASP toolbox to estimate the spreading parameters smax and σmin. The variation of smax and σmin will describe the variation of directional spreading. In frequency domain, the directional spreading parameters show opposite results in different deployments. The directional spreading in the 1st and 2nd deployments do not follow the refraction law while the 3rd one does. In the time domain, the variation of spreading parameters reveals the semi – diurnal oscillations. The comparison between directional spreading and other factors (significant wave height, tidal elevation and current speed) show the dependency of directional spreading on the variation of tidal current in the wave-current interaction.The aim of this study is to investigate the characteristics of the directional spreading when waves propagate into the shallow water zone, North-West in Taiwan. Water elevation data from 3 ADCPs (Acoustic Doppler Current Profiler) deployments during 15 Jan – 1 Feb (2011); 26 May – 22 Jun (2011) and 21 Feb – 16 Mar (2012) were recorded and used to calculate the directional spreading. The three experiments were in Yongan observation field (the 1st at 2 stations; the 2nd at 3 stations; and the 3rd at 2 stations). The Extended Maximum Likelihood Method (EMLM) was applied in this study by DIWASP toolbox to estimate the spreading parameters smax and σmin. The variation of smax and σmin will describe the variation of directional spreading. In frequency domain, the directional spreading parameters show opposite results in different deployments. The directional spreading in the 1st and 2nd deployments do not follow the refraction law while the 3rd one does. In the time domain, the variation of spreading parameters reveals the semi – diurnal oscillations. The comparison between directional spreading and other factors (significant wave height, tidal elevation and current speed) show the dependency of directional spreading on the variation of tidal current in the wave-current interaction.
    Appears in Collections:[Graduate Institute of Hydrological and Oceanic Sciences] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1203View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明