English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23180197      Online Users : 308
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/54217


    Title: 實驗室晶片之整合設計、製作、操控與測試;Integration of Design, Implementation, manipulation, and Testing in Lab-on-a-chip
    Authors: 丁挺洲;Ding,Ting-Jou
    Contributors: 光電科學研究所
    Keywords: 胺基酸;奈米球;實驗室晶片;電濕式;導模共振;Guided-mode Resonance;Electrowetting;amino acid;Lab-on-a-chip;nanosphere
    Date: 2012-07-28
    Issue Date: 2012-09-11 18:40:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: EWOD (electrowetting on dielectric)微流體系統相對於傳統連續流流體系統的優勢在於非連續流流體的架構與虛擬流道的設計。非連續流流體與虛擬流道的架構使流體不再需要傳統的驅動幫浦、控制閥門與固定式微流道等元件,即可進行流體的驅動。本文以EWOD微流體系統為主體架構所組成之實驗室晶片,分別探討此晶片系統操控在少量、多樣性上的應用、整合感測器的能力,與在此流體系統中自合成感測器的可行性。首先以胺基酸序列合成實驗(生物探針的製作),成功地證明此實驗室整合型晶片適用於少量、多樣性等領域的彈性應用。由ESCA(electron spectroscopy for chemical analysis)量測數據結果顯示,此實驗室整合型晶片接合三段亮氨酸序列以及亮胺酸-苯丙胺酸序的接合率分別為63.9 %與77.2 %,顯現其高合成效率。GMR (guided-mode resonance)感測器與EWOD微流體的整合,是本文另一重點,單點與多點兩種模式。具有架構簡單、製作容易、成本低、高通量與具有微小化潛力等特點,使得實驗室整合型晶片的應用將更廣泛。GMR感測器的製作採用軟模壓印的技術進行。其製程簡單、成本低且適合大量、大面積的複製,且可在短時間內完成製作。在程序逐步操控過程,透過LabView所開發的自動控制程式,成功達到驅動與量測的自動化。此外,由於同調光源經過流道後會產生干涉現象而影響穿透光譜中共振波長的判讀。通過空間頻率的低通濾波方法,可消除濾除干涉現象,提高感測器的靈敏度與準確度。藉由不同濃度蔗糖溶液的測試,此整合系統的靈敏度經測試約為17.4 nm/R.I.U.。以實驗室晶片的設計概念而言,樣品或試劑匯入後的所有實驗步驟皆應該在晶片中完成,其中也包含可適應各種反應需求的感測器製作。EWOD微流體系統為實驗室晶片中最重要的基礎架構,亦必須具有合成感測器的能力。以EWOD微流體系統結合奈米球自組裝的特性與自組裝分子膜(Self-Assembled Monolayer)的技術可成功以500nm粒徑的奈米球排列出週期為為20.7μm,線寬為5.4μm類似GMR感測器的一維週期性結構。其週期與結構可依不同尺寸的奈米球與所需的圖案進行調整,亦可應用於其他類型感測器的製作。在流體系統中,自組裝所需感測器乃是一個全新的概念。此概念對實驗室晶片的設計模式,提供一個新的想法。Electrowetting on dielectric (EWOD) microfluidic system takes more advantages over than the conventional continuous fluidic systems on the discrete droplets and the virtual fluid channel construction. the design of discrete droplets and the virtual fluidic channels can operate microfluidics without the pump, the valves, and the fixed microchannels. In this thesis, it is explored with the integration of the actuators and the sensors in a Lab-on-a-chip system to fit the wide reuqests in need of small volume but high diversity of interaction smaples in many applications.Actually, the integration Lab-on-a-chip system is consisted of micro-sensors, micro-actuators, and process controllers. With consideration of the easy integration, the guided-mode resonance (GMR) sensors are choosen as being the micro-sensors, and the EWOD microfluidic drivers as being the micro-actuators.It is demonstrated that the synthesis of peptides is performed on the integration Lab-on-a-chip with high production efficiency. With aids of ESCA, the production efficiency is found around 65%~75%.Besides, it is also successfully demonstrated the microsensors can be further manufactered in the Lab-on-a-chip system itself. The periodic structure in the GMR sensors is easily and efficiently produced by combining the EWOD actuating and the self-synthesis technology. As a result, it proposes one new Lab-on-a-chip that is not only with combination amoung micro-sensors, micro-actuators, and process controllers, but also the micro-sensors needed are fabricated on site by the Lab-on-a-chip itself.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML544View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明