中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/54314
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41659022      Online Users : 1756
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/54314


    Title: Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems;Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems
    Authors: 沈廉智;Shen,Lien-Chih
    Contributors: 數學研究所
    Keywords: 二次特徵值問題;SLEPc;PETSc;PJDPack;Quadratic Eigenvalue Problems;Quadratic PDE Problems;PJDPack;SLEPc;Performance Comparison;PETSc
    Date: 2012-07-09
    Issue Date: 2012-09-11 18:44:18 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在本論文中,我們將有系統的調查兩種用於解決二次特徵值問題(QEPs)的eigenpackage, 包含:the Scalable Library for Eigenvalue Problem Computations(SLEPc)與ParallelJacobi-Davidson Package(PJDPack)這兩個建構在Portable, Extensible Toolkit for Scientific Computation(PETSc)的Package. 對於這兩個eigenpackage最主要的差別在於SLEPc是使用linearization approach並且有多種不同的eigensolver去解決generalized後的特徵值問題. 而另一方面, PJDPack只有使用PJD演算法並且對於二次特徵值問題是使用直接解法. 為了能夠進行接下來的討論, 我們使用一個Matlab-based的工具, a collection of nonlinear eigenvalue problem (NLEVP)來製作大量具有差異性值的矩陣來做一些數值實驗並且用robustness, accuracy和efficiency來評估效率問題.In this thesis, we systematically investigate the numerical performance of two eigenpackages for solving quadratic eigenvalue problems (QEPs), namely Scalable Library for Eigenvalue Problem Computations (SLEPc) and Parallel Jacobi-Davidson Package (PJDPack) are both in common built-on-top of Portable, Extensible, Toolkits for Scientific computation (PETSc) [3]. The major differeces between these two eigenpackages is that SLEPc adopts the linearization approach and provides several linear eigensolvers to solve the resulting companion GEPs. On the other hand, the PJD algorithm is the only kernel solver of PJDPack that targets directly the QEP. To draw the concrete conclusions, we generate a large number of test cases using a Matlab-based toolbox, a collection of nonlinear eigenvalue problem (NLEVP) with a diversity of matrix properties and conduct intense numerical experiments to evaluate the performance in terms of robustness, accuracy and efficiency.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML730View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明