中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/54324
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41653586      在线人数 : 1558
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/54324


    题名: None;A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
    作者: 程郁芬;Cheng,Yu-Fen
    贡献者: 數學研究所
    关键词: 阻尼;平行計算;有限元素法;多項式特徵值問題;聲波;acoustic;polynomial eigenvalue problem;finite element method;Jacobi-Davidson method;additive Schwarz preconditioner;parallel computing;initial search space;precondition;damping
    日期: 2012-07-19
    上传时间: 2012-09-11 18:44:34 (UTC+8)
    出版者: 國立中央大學
    摘要: 許多科學與工程上應用需要準確、快速、穩定和可拓展大型稀疏多項式特徵值問題(PEVPs)的數值解對於離散化的偏微分方程。根據數值結果顯示多項式Jacobi-Davidson演算法能夠有效率地對內部特徵值問題求解,因而被廣泛使用。多項式Jacobi-Davidson演算法是一個子空間法(subspace method),從搜尋空間內提取合適的估計eigenpair並且透過解一個線性系統correction equation在JD的迭代去增加一個基底向量到search space。在本研究當中,我們提出一個新的two-level多項式JD演算法架構在additive Schwarz來解三次多項式特徵值對於噪音工程的應用問題。首先,我們建造搜尋空間利用粗網格之解為細網格的初始基底。另一方面,我們使用一個低成本並且有效率的preconditioner定義在粗網格的restricted additive Schwarz解線性系統correction equation,對於大型問題此方法在多重處理器的平行計算中扮演著重要角色。最後,經由數值結果得到論證,此演算法在平行叢集電腦具有穩健性和延展性。Many scientific and engineering applications require accurate, fast, robust, and scalable numerical solution of large sparse algebraic polynomial eigenvalue problems (PEVPs) arising from some appropriate discretization of partial differential equations. The polynomial Jacobi-Davidson (PJD) algorithm has been numerically shown as a promising approach for the PEVPs and has gained its popularity for finding their interior spectrum of the PEVPs. The PJD algorithm is a subspace method, which extracts the candidate approximate eigenpair from a search space and the space undated by embedding the solution of the correction equation at the JD iteration. In this research, we propose the two-level PJD algorithm for PEVPs with emphasis on the application of the dissipative acoustic cubic eigenvalue problem. The proposed two-level PJD algorithm is based on the Schwarz framework. The initial basis for the search space is constructed on the current level by using the solution of the same eigenvalue problem, but defined on the previous coarser grid. On the other hand, a low-cost and efficient preconditioner based on Schwarz framework, coarse restricted additive Schwarz (RAS_c) preconditioner for the correction equation, which plays a crucial role in parallel computing for large-scale problems by using a large number of processors. Some numerical examples obtained on a parallel cluster of computers are given to demonstrate the robustness and scalability of our PJD algorithm.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML677检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明