無線感測網路有許多應用,戰場便是其中之一。無線感測網路可以用於戰場上的目標物偵測及資料收集。然而,目標物和資料收集點都會移動,這對設計與實作網路系統帶來許多挑戰。雖然目前已經有一些處理多移動資料收集點的研究,但他們假設資料收集點位置已知或是利用耗費能源的方式取得資料收集點的位置。為了改善此方面的問題,我們提出一個在無線感測網路下的資料收集架構,叫動態自適應性的網狀網路。我們分別利用樹狀和網狀網路的優點使得資料收集與遞送更加地有效率。此外,我們介紹的兩種方法來平衡網路負載量,第一個是將資料遞送的負載平均分攤,第二個是調整網路結構平衡網格間的負載量。最後,我們提出改良式的查詢聚集方法,使得可以減少資料回傳等待時間及降低封包流量。模擬結果顯示出動態自適應性的網狀網路在多移動資料收集點的無線感測網路中是已知中最好的資料收集方案。In battlefields, the wireless sensor network can be used for target detection and data collection. However, the mobility of targets as well as the sinks creates challenges for the design and implementation of the system. While there are research proposals capable of handling multiple mobile sinks, these protocols either assume the knowledge of sink location or create too many flooding, leading to a quicker energy consumption. To deal with this issue, we propose a framework for data collection in wireless sensor networks, namly Dynamic and Adaptive Grid (DAG). In our framework, we take the advantages of both grid and tree data structures to route queries and data efficiently. In addition, two mechanisms are introduced to balance the load in the network. The first one helps to distribute the tasks more evenly; and the second one adjust the size of grids to balance the traffic load in each grid. Last, an improved query aggregation is proposed to reduce the query response time and the traffic associated with each query. The simulation results show that DAG outperforms the best known data collection solutions for wireless sensor networks with multiple mobile targets and sinks.