摘要: | 因化石原料的儲存量有限,現有的石油資源將在2050年耗盡,我們正面臨世界能源危機。而氫氣,為未來最具有希望的乾淨燃料。不論是氫氣的製造,氫氣純化,氫能利用,燃料電池的發展,以及氫氣的儲存,均是學術界與產業界研究的重點。氫能源應用的技術瓶頸之一為氫氣的儲存,因此本研究擬研發鋰氮儲氫材料,藉由不同的改質,製程,前處理,或添加催化劑等方式,系統性的研究儲氫材料的儲氫/脫氫反應,並配合鑑定,了解材料製程,結構以及表面積對於儲氫材料的儲氫量及儲放氫動力學影響。期能研發新穎儲氫材料,滿足美國能源部 (US DOE)發表的儲氫應用規劃,亦即儲氫材料滿足6.5 wt%以及65 g/L的重量與體積密度,且分解溫度介於60 ~ 120 oC。本研究擬使用三種方式改質鋰氮儲氫材料,(1) 以金屬,氫化物或氨化物改質,如以Ca,Ca3N2,Ca(NH2)2改質。(2) 添加他種儲氫材料改質,如添加Pd,LaNi5,奈米碳管(carbon nanotube, CNT),及金屬有機骨架材料(metal-organic framework, MOF)等,嘗試藉著不同儲氫材料特性的優勢,達成互相加成的效果,製備具有卓越的吸放氫動力學的材料,每一種添加材料皆系統化的探討其形貌,結構對其催化效應的影響。 (3)前處理改質鋰氮儲氫材料。添加LiOH,PdO,Pd(OH)2於鋰氮儲氫材料中,可以阻礙氫化反應速率,從而減少反應時的迅速放熱與材料燒結等。本計畫擬用以上方法得到最佳化儲氫材料,朝向高儲氫量,高體積密度,易活化,吸放氫反應溫度與壓力適中,低放熱,可逆性佳,長程吸放氫氣穩定性佳,安全性,低成本,使用壽命長等優點,並用XRD,TEM,SEM,BET,ESCA,ICP,TPH/TPD,PCI分析。 ; Hydrogen is viewed as a promising clean fuel of the future. The studies of hydrogen production, hydrogen purification, hydrogen application, fuel cell and hydrogen storage have attracted much attention and been studied widely in academic and technologic fields. Hydrogen storage technology is critical for the development of a hydrogen-based energy. In this project, the development of lithium nitride materials and their application in the hydrogen storage materials will be studied. The effects of the modifications, preparation methods, pretreatments of the materials on the hydrogen capacity and adsorption/desorption properties will be investigated. The aim of this study is to develop novel hydrogen storage materials to meet the US DOE goals, which requires a storage capacity of 6.5 wt % and 65 g/L at the decomposition temperature between 60 and 120 oC for commercial viability. In this project, three processes will be used to modify the lithium nitride materials. (1) Modification of the lithium nitride by metal, nitride or amide. (2) Modification of the lithium nitride by other hydrogen storage materials, such as Pd, LaNi5, carbon nanotube (CNT), or metal-organic framework (MOF). (3) Pretreatment of the lithium nitride by adding LiOH, PdO, or Pd(OH)2. The addition can retard the hydrogenation process and inhibit the sintering of the materials. The modification and pretreatment will influence the hydrogenation/ dehydrogenation kinetics of hydrogen storage materials. The basic relationship between these variables can be elucidated in the project. By use of the above methods, novel hydrogen storage materials with high hydrogen capacity, fast activation process and kinetics, low temperature of hydrogen desorption, low pressure of hydrogen absorption, good reversibility, durability, stability, safety, and low cost will be developed. The hydrogenation/dehydrogenation performance and basic properties of the hydrogen storage materials will be characterized by TEM, SEM, BET, ESCA, ICP, TPH/TPD, and PCI. ; 研究期間 9708 ~ 9807 |