中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/57025
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41648740      在线人数 : 1523
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/57025


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/57025


    题名: Dehn twists與四維辛空間內拉格朗日子流形之辛合痕類;Dehn Twists and Symplectic Isotopy of Lagrangian Surfaces in Symplectic 4-Space
    作者: 姚美琳
    贡献者: 中央大學數學系
    关键词: 數學類
    日期: 2008-09-01
    上传时间: 2012-10-01 15:09:52 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 四維空間辛幾何可說是最簡單的四維辛流形,然吾人對其上的拉格朗日輪胎面的辛合痕類的了解仍十分有限‧截至目前僅知存在有一族的特殊辛合痕類‧ 本計畫乃為探計以下兩個有關拉格朗日輪胎面的辛合痕類問題‧其一為是否存在新的辛合痕類‧其二為已知的特殊合痕類可否經由在基本的辛合痕類上的手術產生‧ 對於第一個問題本計畫將研究並決定一組新近建構的拉格朗日輪胎面是否代表新的辛合痕類,對於第二個問題本計畫將(1)深入探討Luttinger手術對辛合痕類的影響,(2)著手建構一種帶邊的廣義Dehn twist,並研究其對辛合痕類之作用‧ 本計畫的結果不單將對四維辛空間中拉格朗日輪胎面的分類問題做出新的貢獻,亦將有助於對一般四維辛流形中拉格朗日曲面的理解‧ ; Symplectic 4-space is arguably the simplest symplectic 4-manifold, yet the classification of embedded Lagrangian tori in it up to symplectic isotopy is far from being complete. Up to now there has been found only one type (up to scaling) of special Lagrangian tori which are not symplectically isotopic to any of the Clifford tori, and these special tori are monotone. This project focuses on the following two problems concerning the symplectic isotopy of Lagrangian tori in R4: One is the existence of new isotopy classes of Lagrangian tori in R4, and the other is to find a surgery that will produce a currently known special torus from a Clifford torus. For the first question the PI will study an infinite family of potentially new Lagrangian tori produced by Dehn twists. On the second question the PI will investigate the Luttinger’s surgery and study the construction of a relative version of generalized Dehn twist and examine its effect on Lagrangian tori. The results of this project will not only make new progress on the classification of Lagrangian tori in R4, but also be applied to study Lagrangian surfaces in general symplectic 4-manifolds. ; 研究期間 9708 ~ 9807
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[數學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML309检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明