中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/57040
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42141700      Online Users : 933
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/57040


    Title: 非線性守恆律解的漸進穩定性研究;The Study of Asymptotic Stability of Solutions to Nonlinear Balance Laws
    Authors: 洪盟凱
    Contributors: 中央大學數學系
    Keywords: 數學類;非線性守恆律;漸進穩定性;尤拉方程;尤拉-泊桑方程;MHD模型;Nonlinear balance laws;asymptotic stability;Euler equations with viscosity and variable area duct;Euler-Poisson equations;MHD model
    Date: 2009-09-01
    Issue Date: 2012-10-01 15:10:17 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 在本計劃裡,我們研讀非線性守恆律解的漸進穩定性。在這個問題裡面要處理的方程式有(1)氣體動力學裡具有黏性項的尤拉方程、(2)解對於空間具有對稱性質的尤拉-泊桑方程,且此方程具有黏性項、 (3)磁流體力學的模型。其中我們關注的主題是討論與時間無關的解的非線性漸進穩定行為,此種解又分為光滑與不連續,我們將針對不同的情況去研究。首先我們用在奇異擾動中的幾何觀念的技巧,及動態系統的手法去證明某些無黏性流體的穩態解,都有一個相對應的具有黏性的穩態解。所以要研讀穩態解的漸進穩定行為就必須從具有黏性項的穩態解著手。在這研究中,我們先討論在尤拉方程中某些獨特的穩態解的線性穩定性,接著推廣先前的方法去得到穩態解的非線性的漸進穩定性。然後推廣此類方法到尤拉-泊桑方程及磁流體力學的模型。 ; In this project we study the asymptotic stability of solutions to nonlinear balance laws. The nonlinear balance laws we deal with here include Euler equations with viscosity and variable area duct in gas dynamic, Euler-Poisson equations with viscosity (radical symmetric case) and magnetohydrodynamics (MHD) model. The main topic we focus here is to establish the nonlinear asymptotic stability of either classical steady states or standing shocks. First, by the technique of geometric singular perturbations, we show that for some profiles of steady states for the invicid flow, there exit corresponding viscous profiles. Then we study the asymptotic stability of those viscous profiles. In this project, we first study the linear stability of some interesting steady states for the Euler equations in transonic flows, followed by the nonlinear asymptotic stability of steady states. Then we try to extend the analysis to this problem to Euler-Poisson equations and MHD model. ; 研究期間 9808 ~ 9907
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Mathematics] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML282View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明