本研究主要是建立一套可靠的方法來分析水環境中的芳香族磺酸鹽類有機污染物之含量,其中包含奈磺酸鹽類(Naphthalene-sulfonates)與苯磺酸鹽類(Benzenesulfonates)化合物。 奈磺酸鹽類的主要結構是奈丸(Naphthalene)在不同位置上接有磺酸根的化合物,其可能的來源是偶氮染料(Azo dye)經由生物分解所產生的。由於這些化合物很難再被微生物分解,會污染水源及影響生態環境。本研究利用固相萃取法(SPE)將樣品萃取與濃縮後,再以氣相層析質譜儀(GC/MS)配合離子對試劑(Tetrabutyl- ammonium salts,TBA),在氣相層析儀注射埠(Injection port)中進行高溫直接衍生化的技術來分析水環境中奈磺酸鹽類,並搭配毛細管電泳儀進行比對,發展出一套穩定、快速的微量分析檢測技術,測定水環境中奈磺酸鹽類的含量,其偵測極限於200 mL水樣中可至0.05 µg/L。 研究中也針對南部的幾條河流與工業區進行真實水樣分析,結果顯示真實水樣添加(spike)奈磺酸鹽類異構物的回收率為71∼79%,其精密度(%RSD)為8.8∼10.1%,且發現Naphthalene-2-sulfonate是河流與工業區放流水中最主要的奈磺酸鹽類污染物。 本研究另一目標是建立樣品線上濃縮技術以提高毛細管電泳的靈敏度。毛細管電泳是近年來相當受到重視的分析技術,但往往受限於毛細管的光徑長度,在UV的偵測上,無法有效降低分析的靈敏度;可利用樣品線上濃縮技術來提高靈敏度的方式,不必更改或變換任何儀器設備,可說是既簡便又經濟的方式。其原理是增加毛細管中樣品的進樣量,透過不同方式,將樣品在樣品區間中聚集濃縮,以提高樣品的相對濃度。實驗中以直鏈式烷基苯磺酸鹽類(LAS)進行分析,在最佳的樣品堆積條件下,有效將偵測極限由0.2~1 mg/L降低至0.002~0.01 mg/L,其遷移時間與波峰的再現性也因加入內標準品而有顯著的改進,使分析物的定性與定量更加精密。本研究並以不同廠牌清潔劑進行樣品分析,搭配常用的高效液相層析儀(HPLC)方法進行比對,結果顯示CE與HPLC具有同樣的分析結果,但CE只需使用非常少量的溶劑,且具有分析時間短與分離效率高的優點。 The research presents modified methods to analyze polar and water-soluble aromatic sulfonate, including naphthalenesulfonate isomers (NS) and linear alkylbenzene-sulfonates (LAS) residues, in industrial effluents and river water samples. For naphthalenesulfonate isomers, the method involves extraction of samples by a styrene-divinylbenzene copolymer (PS-DVB) solid-phase extraction (SPE) cartridge, and on-line derivatization in the gas chromatography injection-port using a large-volume (10 ml) sample injection with tetrabutylammonium (TBA) salts. The analytes were then identified and quantitatively determined by gas chromatography-mass spectrometry (GC-MS). The large-volume injection-port derivatization technique provides sensitivity, fast and reproducible results for NS isomers, to quantitation at 0.05 mg/L in 200 ml of water samples. Recovery of the NS isomers in spiked water samples ranged from 70% to 82% while RSD around 10%. Naphthalene -2-sulfonate was found as a major pollutant and propagated in river and industrial effluents. The compatible results using capillary zone electrophoresis were obtained. The most effective CZE separation conditions were obtained in 20 mM borate buffer with 30% acetonitrile at pH 9.0 and 25°C. Determination limits of NS isomers in aqueous samples was in the low mg/L ranges. The reproducibility of migration time and quantitative results of CZE can be improved by using the internal standards. For LAS, a systematic investigation of optimal conditions by capillary zone electrophoresis (CZE) using large-volume sample stacking (LVSS) technique was presented. The most effective sample stacking and separation conditions was 20 mM borate buffer with 30% acetonitrile at pH 9.0, and the sample hydrodynamic injection of up to 90 seconds at 4 psi (around 711 nl). Under such conditions, approximately a 100-fold enrichment factor was achieved based on total peak areas. The reproducibility of migration time and quantitative results of stacking CZE can be improved by using internal standards. Quantitation limits of the homologues of LAS were 0.002 to 0.01 mg/L under these enrichment conditions. The analysis of real samples of laundry and dishwashing detergents was performed. The established HPLC method was applied to evaluate the stacking CZE method, and compatible results were obtained.