本論文的研究目的為系統性的設計與合成數個系列含有Quinoxaline基團之模型分子,希望藉由增加分子的π-電子共軛橋樑與增加分子的分歧數,探討分子結構的改變對雙光子吸收特性的影響。我們透過線性光學的測量結果可以得知模型分子之最大吸收波長、最大放射波長、絕對螢光量子產率與單光子螢光生命期;非線性光學使用奈秒雷射進行雙光子激發效率的量測與光學功率限幅實驗,而使用飛秒雷射進行雙光子激發螢光強度與激發光源強度間關係證實觀察到的螢光是經由雙光子吸收所產生的、雙光子激發截面量測主要使用螢光比較法計算得出。經過一系列的光學實驗操作與探討後,可歸納出以下幾點結果:(1)增加分子中心的π-電子共軛橋樑長度,可以促進提升電子內電荷轉移程度,增加雙光子激發截面值。(2)若增加分子結構之分歧數其雙光子激發效能可以大幅提升。(3)Quinoxaline這類型結構對於雙光子吸收的研究在於其具有較長之螢光生命期,因為此現象容易造成激發態再吸收,可將其運用於光學功率限幅材料中。The purpose of this study is the systematic design and synthesis of several series containing the Quinoxaline groups model molecules. We want to explore the molecular changes in the structure of two-photon absorption properties of influence by increase in molecular π-electron conjugated bridge and increase the number of molecular branches. After a series of linear and nonlinear optical measurement and discussion can be summarized as the following results. The first is to increase the molecular center of the π-electron conjugation bridge length, can contribute to enhance the degree of charge transfer in the electronics and increase the two-photon excitation cross section value. The second is increasing the number of molecular branches can Promote dramatically of two-photon excitation performance. The third is Quinoxaline this type of structure have much longer fluorescence lifetime, this behavior is likely to cause the excited state re-absorption, it can be applied to optical power limiting marerials.