二氧化鈦一直都是很好的白色塗料和光催化觸媒材料,但由於其對於光的起始吸收位置是在紫外光的範圍(約在338nm)使其在實質應用上有些限制,本實驗藉由正負電荷相互吸引的原理,將P3SH(poly(2-(3-thienyloxy) ethanesulfonate))、PSA(poly(N-(4-sulfoph enyl) aniline))這二種側鏈基上帶有亞硫酸根的水溶性導電高分子,包覆在帶有正電荷的二氧化鈦粒子上,希望經由二種半導體的交互作用將二氧化鈦所需的激發光源調到太陽光的可見光波長,以提高二氧化鈦的實際應用。我們利用TEM、SEM和DFM觀察導電高分子與TiO2之間的交互作用,發現在TiO2-P3SH複合物中TiO2粒子是進入至導電高分子所形成的聚集物之中,而TiO2-PSA複合物則是TiO2嵌入PSA鏈與鏈所束成的長條型結構中,同時將PSA所形成的長條規則結構破壞掉;IR光譜顯示發現TiO2-P3SH複合物中S=O鍵的吸收位置有改變;ESCA也有發現TiO2-P3SH複合物中S元素的訊號與純P3SH不同,而UV/Vis光譜證明TiO2-P3SH複合物的起始吸收位置相較於TiO2有往長波長的方向移動(最大位移值34nm),但TiO2-PSA複合物卻沒有以上的光譜改變,顯然高分子的結構對TiO2的作用有很大的不同。除外兩種複合物中TiO2的結晶區塊大小都比純TiO2還小,表示加入兩種高分子對TiO2都有分散效果。 Titanium dioxide used to be a good paint and photocatalyst. However the absorption threshold of TiO2 falls in ultraviolet region (about 340nm). In this study we use static attraction between negatively charged. P3SH(poly(2-(3-thienyloxy)ethanesulfonate)) or PSA(poly (N-(4-sulfophenyl)aniline)) and positively charged titanium dioxide to form composites. The band gap energy of TiO2 maybe reduced by the interactions between two semi-conductive materials. Different stoichiometry amount of conducting polymer and titanium dioxide were blended together and the resulting composites were analyzed with various spectroscopic methods. TEM SEM and DFM revealed that titanium dioxide will insert into the aggregation of P3SH. On the other hand titanium dioxide particles penetrate the bundle of PSA chains and at the same time destroy the regular arrangement of PSA polymer chains. IR and ESCA spectra showed that the absorption of S=O bond on P3SH move to higher wavenumber and the binding of S shift to higher value. UV/Vis/NIR results proved that the absorption threshold of TiO2 has shifted to higher wavelength by forming the composite with P3SH. Furthermore, the domain size of TiO2 was reduced by forming composite with conjugated polymers.