English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41624963      線上人數 : 1780
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/5933


    題名: 利用紅序列星系團巡天觀測之光度紅位移目錄進行相鄰星系分析;Pair Analysis of the Photometric Redshift Catalog from the Red-Sequence Cluster Survey
    作者: 謝寶慶;Bau-Ching Hsieh
    貢獻者: 天文研究所
    關鍵詞: 星系演化;紅位移;巡天觀測;相鄰星系;galaxy evolution;survey;close pair;distances and redshifts
    日期: 2005-06-10
    上傳時間: 2009-09-22 10:10:42 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: The stages of galaxy interactions and mergers play a very important role on galaxy evolution and structure formation. A high merger rate in the past can change the morphology, luminosity, stellar population, and number density of galaxies dramatically. Therefore, the evolution of the merger rate is directly connected to the structure formation of the universe. For this study, we focus on close pairs of galaxies because they are good candidates of early-stage mergers, and the pair fractions can be converted to the merger rates easily. We study the evolution of the number of companions per galaxy (Nc) by choosing a volume-limited subset of the photometric redshift catalog from the Red-Sequence Cluster Survey (RCS). The RCS provides a large and deep photometric catalog of galaxies in the z ′ and R c bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg 2. We compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and Rc < 24, giving an rms scatter σ(Δz) < 0.06 within the redshift range 0.2 < z < 0.5 and σ(Δz) < 0.11 for galaxies at 0.0 < z < 1.5. We describe the empirical quadratic polynomial photometric redshift fitting technique which we use to determine the relation between redshift and photometry. A kd-tree algorithm is used to divide up our sample to improve the accuracy of our catalog. We also present a method for estimating the photometric redshift error for individual galaxies. We show that the redshift distribution of our sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys. We choose a subsample of the RCS photometric redshift catalog, which contains over 60,000 objects with a moderate redshift range at 0.25 ≦ z ≦ 0.8 and with MR c ≦ -20. After applying incompleteness and background corrections, Nc shows a clear evolution with redshift. The Nc value for the whole sample grows with redshift as (1+z) m with m = 3.52±0.06 for z < 0.5, but drops with m = -1.01±0.04 for z > 0.5. However, if the galaxies are separated into several different absolute magnitude bins, the m values for z > 0.5 increase with luminosity; while they are similar for different magnitude bins for z < 0.5. The m values determined in many previous observational results are very diverse (0 < m < 4) which is probably just simply due to that they look at different mass (luminosity) ranges and do not have adequate object numbers to reduce the error to detect the decrease of Nc for z > 0.5. We interpret our result by using the “down-sizing” structure formation scenario claiming bigger galaxies are formed earlier and they stop being formed at a certain epoch at z > 0.8, while smaller galaxies are formed later and have a formation peak at z ? 0.5 which is consistent with the study of star formation rate for galaxies with different masses at different epoch from Heavens et al. (2004).
    顯示於類別:[天文研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明