English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22916445      Online Users : 1550
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/596


    Title: 宏觀收斂迭代法速度比較
    Authors: 高銘伸;Ming-Shen Gang
    Contributors: 土木工程研究所
    Keywords: 牛頓-拉弗森法;非線性代數方程式
    Date: 2001-07-11
    Issue Date: 2009-09-18 17:08:27 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 迭代法是計算方法中的一種基本方法,而在求解非線性代數方程式的領域中,牛頓-拉弗森法(Newton-Raphson method)一直被廣泛的應用,可是在應用時需要對問題瞭解很清楚,即大略知道解的位置,換句話說,必須給一個很好的初始值。 由於牛頓-拉弗森的收斂性太依賴於初始值,實際上,非線性方程式較複雜時,選取保證收斂的初始值是困難的。本研究的目的是在於嘗試發展新的方法,使在求解非線性方程式時,不需考慮初始值的位置,也就是發展一種宏觀收斂(Globally Convergent)的方法,加以改良牛頓-拉弗森來求解非線性方程式。 本研究將新發展出的座標平移法與其他宏觀收斂的迭代法做運算速度上的比較,以期對工程應用中求解非線性方程式能有所幫助。 When solving nonlinear equations the Newton-Raphson method is used by many people . But when we use the Newton-Raphson method to solve nonlinear equations , we must give the initial value close to the solution . This research studies a new method which is globally convergent. The new method improves the Newton-Raphson method . Then we can solve nonlinear equations by giving the initial value which is not close to the solution. We also compare the velocity of the new method with other globally convergent methods .
    Appears in Collections:[土木工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown865View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明