此篇論文主要是觀察中孔洞分子篩SBA-15對於高分子電解質導電行為的影響,以及在LiClO4存在的條件下,以三嵌段共聚物當作界面活性劑進行自行聚集動作,再將環氧基的矽氧烷化合物和TEOS進行共縮合作用後直接在高分子中形成中孔洞物質,進而製成新型態的有機無機複合式高分子電解質。 在此篇論文的第一部分,藉由固態核磁共振光譜儀 (solid-atate NMR) 、X光繞射儀 (XRD) 、掃描式電子顯微鏡 (SEM) 、微差掃描卡計 (DSC) 與交流阻抗分析儀 (AC-impedance) 等儀器對以聚氧化乙烯為基材的固態高分子電解質加以分析研究。藉由交流阻抗分析儀與微差掃描卡計的分析結果,發現混摻未鍛燒SBA-15於固態高分子電解質中,其導電度有下降的趨勢。此趨勢的形成是因為未鍛燒SBA-15會阻礙鋰陽離子的傳遞。相對而言,當混摻鍛燒後SBA-15於固態高分子電解質時,由於鍛燒後SBA-15本身除了可以降低高分子的結晶度,也可以提供通道提供鋰陽離子通過,減少阻礙鋰陽離子傳遞的機率,因此其導電度的結果為上升的趨勢。鋰鹽添加量為10 wt% 時,混摻10 wt% calcined SBA-15於固態高分子電解質後,其導電度在30 oC時可達3.85 × 10-5 S/cm。 至於此篇論文的第二部分中,是將混摻三嵌段共聚物、矽氧烷化合物與鋰鹽的新型態複合式高分子電解質加以分析判斷。根據XRD的結果可以發現混摻有三嵌段共聚物以及鹼金屬鹽類的高分子膜具有中孔洞結構的繞射峰訊號,尤其以氧鋰比16的繞射峰訊號更為明顯。將X光繞射儀與交流阻抗分析儀的分析結果加以綜合後,初步判斷孔洞結構的形成能促使導電度的上升。在此研究部分,氧鋰比16之三嵌段高分電解質的導電度在30 oC時,導電度皆可達到10-5 S/cm。 The objective of this study is to investigate the effect of the mesoporous molecular sieve SBA-15 on the ionic conductivity behavior, and investigate into a inorganic-organic hybrid electrolyte derived from the self-assembly of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer by co-condensation of an epoxy silane and tetraethoxysilane (TEOS) in the presence of LiClO4. In the first part of this thesis, solid polymer electrolytes based on poly (ethylene oxide) (PEO) have been characterized by solid-state NMR, scanning electron microscopy (SEM), X-ray diffraction Spectrometer (XRD), differential scanning calorimemeter (DSC), and AC impedance measures. The present of small quantity of uncalcined SBA-15 do not enhance the resulting composite electrolyte as compared to present PEO/LiClO4 electrolyte, mainly because uncalcined SBA-15 filler acts an insulator that impedes the lithium ion transport. However, the present of small quantity of calcined SBA-15 enhances the resulting composite electrolyte as compared to present PEO/LiClO4 electrolyte. The hybrid with 10 wt% LiClO4 and 10 wt% calcined SBA-15 reaches conductivity up to 3.85 × 10-5 S/cm at 30 oC. In the second part of this thesis, a new inorganic-organic hybrid electrolyte has been prepared and characterized. The block copolymer acts as a structure-directing surfactant to organize polymerizing XRD results show the formation of stabilized mesophases with long-range ordering has been built by the self-assembly of triblock copolymer and alkali metal salts, particularly for [O]/[Li] = 16. A combination of XRD and conductivity results allows us to presume that the drastically enhanced conductivity for the hybrid with high long-range ordering is closely related to the formation of mesophase, which might improve the arrangement of Li+ conducting pathways. The hybrid with [O] / [Li] = 16 reaches conductivity up to 10-5 S/cm at 30 oC