English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41645274      線上人數 : 1308
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/60085


    題名: Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling
    作者: 徐紹凱;Shiu,Shau-Kai
    貢獻者: 統計研究所
    關鍵詞: 左截略;右設限;對數常態分佈;韋伯分佈;牛頓-拉弗森演算法;最大期望演算法;赤池信息量準則;Left truncation;right censoring;lognormal distribution;Weibull distribution;Newton-Raphson algorithm;EM algorithm;Akaike's information criterion
    日期: 2013-06-26
    上傳時間: 2013-07-10 12:05:01 (UTC+8)
    出版者: 國立中央大學
    摘要: 電力變壓器壽命資料經常發生左截略(left truncation)與右設限(right censoring)的情況。Balakrishnan and Mitra (2011 JSPI, 2012 CSDA)針對截略與設限資料,分別以對數常態(lognormal)與韋伯(Weibull)為模型,提出利用最大期望演算法(EM algorithm)得到最大概似估計量(maximum likelihood estiamtion)。我們以模擬研究來顯示牛頓-拉弗森演算法(Newton-Raphson algorithm)與最大期望演算法在參數估計上的優劣。我們發現以對數常態分配為模型,當樣本數較小與設限比率較高時,使用牛頓法估計參數容易發生發散的情形。然而,在樣本數較大的情況下,牛頓法比最大期望演算法有較快的收斂速度並能得到較準確的估計量。另外,我們使用赤池信息量準則(Akaike's information criterion)來選擇最合適的模型。
    Left truncation and right censoring often occurs in power transformer lifetime data. Suitably adjusted for censoring and truncation, the maximum likelihood estimation has been proposed with the EM algorithm under the lognormal and Weibull models (Balakrishnan and Mitra, 2011 JSPI, 2012 CSDA). In this thesis, we compare the performance of the Newton-Raphson algorithm with their EM algorithm by simulations. Our comparison based on Monte Carlo simulations shows that the Newton-Raphson method for lognormal distribution fails to converge frequently when the sample size is small and the percentage of censoring is high. However, we observe that the Newton-Raphson method has a faster rate of convergence and give more accurate standard error estimates than the EM with missing information principle for moderate sample sizes. In addition, we examine the performance of the Akaike's information criterion (AIC) for selecting a best distribution among candidate models. Finally, these methods discussed here are illustrated through real data examples.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML830檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明