English  |  正體中文  |  简体中文  |  Items with full text/Total items : 68069/68069 (100%)
Visitors : 23097609      Online Users : 203
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/60425

    Title: 多重航照影像之線段匹配於房屋模型重建;Line Matching from Multiple Aerial Images for Building Reconstruction
    Authors: 顏柔矞;Yen,Jou-yu
    Contributors: 土木工程學系
    Keywords: 多重航照影像;雙視窗匹配法;線段前方交會;錯誤偵測;房屋模型重建;Multiple aerial images;Left-right matching;Space line intersection;Blunder detection;Building model reconstruction
    Date: 2013-07-22
    Issue Date: 2013-08-22 11:37:05 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來,三維資料被廣泛地發展及應用於空間資訊領域。建立三維空間資訊系統的元件有房屋、道路、公共設施、植物等,其中又以房屋模型的重建為最外顯者。重建房屋模型常使用的資料來源之一為航照影像。在多數的房屋樣式中,其邊界處常具有直線特徵結構,因此線段匹配對於房屋模型的重建尤為重要。本研究將藉由高重疊率的航照影像,配合影像線特徵的匹配進行房屋模型之重建。
    Nowadays, three dimensional data has been widely used in the field of geospatial information. To reconstruct 3D GIS, major components include buildings, roads, utilities, vegetation, etc. Among those components, building models are the most prominent in the reconstruction work. Aerial images are commonly used in building reconstruction. In most of man-made scenes, line segment features usually exist along boundaries. Thus, line matching plays an important role in the building reconstruction. The building reconstruction with line matching algorithm is performed using high overlapping aerial images in this study.
    The proposed method includes (1) boundary determination and (2) roof structure reconstruction. If the building boundaries can be determined, then the roof structures can thus be processed and the interference of non-target objects can also be reduced. The basic procedures in those two parts are similar with the differences of parameter settings. First, feature extraction is to extract the straight lines, and then use line matching with the strategy of left-right windows to locate the conjugate lines in multiple images. In the 3D line positioning, space line intersection with the blunder detection are combined to derive quality results. The reconstruction and refinement processes are done in an iterative way.
    In the boundary determination, for the reason that area of interest includes non-target objects, the interest line selection is needed for the estimation of their features. In the roof structure reconstruction, the areas of interest are produced by the back-project of the building boundaries. All of the extracted lines are selected in this stage to avoid line missing. After the 3D line positioning of the roof structure, the boundary model and roof structure are integrated with the initial model reconstruction and refinement to generate the 3D building model.
    The experimental results indicate that multi-angle images can improve the matching successful rate. With the blunder detection, unreliable matched line segment can be eliminated effectively. The RMSE of the test models can reach 0.1m in X and Y direction, and 0.5m in Z direction.
    Appears in Collections:[土木工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明