本論文實驗第一部分是利用三聚氯氰CC與三嵌段高分子 ED2003 脫去聚合形成長鏈狀高分子,再加入適量的 ED2003 接在此高分子的側端形成分枝狀高分子,之後再將此高分子各別接上無機矽氧烷 GLYMO,最後添加不同濃度的鋰鹽 LiClO4,合成出長鏈分枝型結構的有機無機固態高分子電解質。本研究對高分子的重複單元多寡做比較,找出最佳單元數目,之後對摻雜鋰鹽濃度不同,做一系列結構鑑定與電化學研究的探討。 第一部分經由分析研究過後,選定離子導電度較高的重複單元高分子主體為 CEG(9),並由離子導電度測得出在室溫下最佳的導電度為樣品CEG(9)-32,可達 1.61 × 10-4 S cm-1,並且氧化裂解電壓可達 4.0 V,且樣品 CEG(9)-32 也有較高的離子遷移數目為 0.330,這可以表明此固態高分子電解質應用於鋰電池上面是非常具有潛力與前途性的。 第二部分將 CEG(9)-∞ 吸附含有不同鋰鹽之有機液態電解液,將其製備成膠態高分子電解質;發現離子導電度在室溫中最佳導電度的樣品為 CEG(9)-∞ 吸附 1 M LiPF6 in EC/DEC (1:1,v/v),可達到6.48 × 10-3 S cm-1,並可承受電壓範圍約在 4.0 V,最後以 CEG(9)-∞ 吸附 1 M LiPF6 in EC/DEC (1:1,v/v) 組裝成鋰電池以固定的充放電速率 0.2 C 來測試電池的穩定效能測試,起始電容量約達 117 mAh g-1,並可發現此電解質在前30個循環是較穩定的,之後加以研究改質是適合應用於鋰電池當中。 A new hyperbranched organic–inorganic hybrid electrolyte membrane based on triblock co-polymer poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (ED2003), 2,4,6-trichloro-1,3,5-triazine (CC), 3-(glycidyloxypropyl)trimethoxysilane (GLYMO) and Lithium perchlorate (LiClO4) has been synthesized by a sol–gel process and characterized by a variety of experimental techniques. A maximum ionic conductivity of 1.61 × 10?4 S cm?1, a relatively high value for solid polymer electrolytes, was achieved at 30 ?C for the hybrid electrolyte with a [O]/[Li] ratio of 32, high value of Li+ transference number (t+ = 0.330) and with sufficient electrochemical stability up to 4.0 V. The hybrid organic-inorganic electrolyte is a potential polymer electrolyte for solid state rechargeable lithium polymer batteries The hybrid membrane is plasticized with different electrolyte solvents and exhibits remarkable swelling ratios in the range of 700–800 %. The ionic conductivity of the hybrid electrolyte membranes is varied with different electrolyte solvents and shows a maximum value of 6.48 × 10?3 S cm?1 for 1 M LiPF6 in EC/DEC at 30 °C and with sufficient electrochemical stability up to 4.0 V. The test cell carries initial discharge capacity of 117 mAh g?1 at a current rate of 0.2 C and shows good cycling performance up to 30 cycles and coulombic efficiency of 90 % for the entire cycles. The plasticized organic–inorganic hybrid electrolyte membrane holds promise for applications in lithium polymer batteries.