English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78818/78818 (100%)
造訪人次 : 35001073      線上人數 : 439
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/6061


    題名: 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand
    作者: 胡弼涵;Bi-Han Hu
    貢獻者: 化學研究所
    關鍵詞: 發光二極體;Iridium complex;OLED
    日期: 2005-06-28
    上傳時間: 2009-09-22 10:12:37 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 近年來,有機發光二極體(OLED)快速的發展。主要的原因在於它具有製作上的簡易性、低驅動電壓、低秏電功率、廣視角、高亮度和高效率、超薄結構與機械可撓性等性質,因此有機發光二極體於未來幾年內是極有可能挑戰平面液晶顯示器(LCD)的市場。而現在已有幾家公司已生產單色OLED顯示器用於手機螢幕與汽車儀表板上,而下個市場上的目標則是開發全色系OLED顯示器。 全色系OLED顯示器則需紅、綠、藍三色系發光材料,而開發新型藍光材料為近年來較為熱門的題材,原因在於它能轉換成其他兩種色系的發光材料。由於藍光材料的能帶(band gap)較大,擁有較高的低未配對分子軌域(LUMO),易造成陰極電子不易躍遷,且現有的藍光材料的光色純度、穩定度不夠與生命週期短(lifetime),這些仍是有待研究與改進的地方。另一有趣的課材則為紅光材料,主要分成聚合物材料與小分子材料,此兩種不同物性的材料皆利用微調(tuning)結構的共軛性質來造成能帶降低而獲得純光色,卻易造成其光量子產率下降,使其不利於應用。 在本篇論文中是利用液相合成方法來模擬固相合成,以期待能以組合式化學來研發及製備OLED之紅色燐光發光材料。 固相合成的方法最早由R. B. Mrrifile所開創,他並因此而獲得1984諾貝爾化學獎; 由於組合式化學在先導藥物的研發或甚至於在候選藥物的最佳化上具有許多的優點,因此近幾年來,在固相合成方法的改良與電腦自動化操作均有非常大的進步,已使得固相合成方法不僅在醫學領域上引起熱烈的迴響,並且在工業界的應用上,更是開發新型材料的利器。 In the near future, a rapid growth is sighted in applications of organic light-emitting devices (OLED) in diverse fields. The major reason behind such a rapid expansion is their ability to provide low-cost route for large-area light-emitting display technology. Their flexibility, low cost of fabrication and low operational voltages are some of the advantages that have attracted considerable interest of scientific as well as commercial community. Furthermore, organic light-emitting diodes (OLEDs) can be used in displays enabling wide viewing angle. Already the monochromatic OLEDs are being used for display panels of mobile phones and car stereos. However, Full-color display is the most covetous target into the flat-panel display market. Red, green, and blue colors with appropriate chromaticity are necessary for full-color graphical display. Recently designed new blue emitters are the most sought-after materials because adequate modifications in level of their conjugation may convert them to green or red emitters. However, the blue emitters posses high lowest unoccupied molecular orbital (LUMO) and the large band gap energy hence the electrons migration from cathode to anode is difficult. Even in case of blue light-emitting materials, besides the color, purity, thermal stability and lifetime are required to be improved. The most interesting among three color emitters are red light-emitting materials which have been intrinsically difficult to obtain from conjugated polymers and small molecules. The attempt to achieve desired color by elaborating the conjugation is accompanied by the decrease in luminescence intensity with red-shifting emission and the applicability. Solid phase synthesis is itself a gem with the laureate of Nobel Prize. Now due to the easy accessibility of solid-phase organic synthesis, combinatorial chemistry has revolutionized the world of medicinal chemistry and has now become a must in the field of drug discovery. With the automated implements, it would serve as an even more powerful tool for the discovery of new materials possible for all kinds of applications in the industrial world.
    顯示於類別:[化學研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明