金屬連接板在固態氧化物燃料電池 (Solid Oxide Fuel Cell, SOFC)中之功用為單電池電的傳導、與隔絕陰陽兩極氣氛。由於SOFC操作溫度降低至600 ~ 800℃,使得肥粒鐵系 (Ferritic Stainless Steel) Fe-Cr合金之金屬連接板材料可應用在SOFC中。然而金屬連接板材料長時間於SOFC操作環境下,其表面會生成過厚的氧化層及Cr向外揮發造成陰極毒化。這些現象均會降低SOFC電池堆整體的輸出效能。 為了有效抑制氧化層生成及鉻向外揮發,最直接方法為於連接板材料表面上披覆保護層。此舉不僅可減緩氧化層成長速率,更能有效阻礙Cr向外揮發。在本研究中,我們選擇La0.67Sr0.33MnO3 (LSMO)鈣鈦礦材料當作保護層材料,利用氣膠沉積法來製備保護層,並與網版印刷法製備之保護層比較其面積比電阻、高溫抗氧化性及抑止鉻揮發的效果。SEM結果顯示,高緻密與厚度均勻之LSMO保護層已成功利用氣膠沉積法批覆在材料表面上。經800℃高溫氧化750小時後,氣膠沉積法製備之保護層連接板在高溫抗氧化性、面積比電阻及阻礙鉻揮發性均優於網版印刷法製備之保護層材料。 In recent years, solid oxide fuel cell working temperature was down to 600℃ to 800℃, thus ferritic stainless steel was used as interconnect in Solid Oxide Fuel Cell (SOFC). The functions of interconnect are electrical conduction and separated air and fuel in cathode and anode, respectively. However, long term in SOFC operating atmosphere, the oxidation and Cr poisoning are nonetheless formidable to cause the failure of interconnects. The protective layer coating on the materials surface was effective way to barrier Cr outward diffusion and excess oxide layer formed on the surface of interconnect materials. In this study, La0.67Sr0.33MnO3 (LSMO) perovskite structure was choosing as protective layer to coating on SS441 surface by aerosol deposition method and screen printing, respectively. SEM results show that high density and uniform thickness LSMO protective layer was success coated on SS441 surface by aerosol deposition method. After 750 hours oxidation at 800℃, the ASR, oxidation resistance and Cr evaporation of coating materials by aerosol deposition method was better than coated by screen printing.