中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/60921
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41642029      Online Users : 1404
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/60921


    Title: 針對名目、個數與有序資料迴歸係數統計檢定力計算的普世強韌法
    Authors: 鄭雅云;CHENG,YA-YUN
    Contributors: 統計研究所
    Keywords: 廣義線性模型;擴充資料集;統計檢定力;費雪訊息;Wald 檢定統計量;拔靴法;generalized linear model;expanded data set;power;Fisher information;Wald test statistic;Bootstrap
    Date: 2013-07-11
    Issue Date: 2013-08-22 12:06:45 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Lyles et al. (2007)提出一個針對廣義線性模型,利用資料擴充來估計統計檢定力的方法。由於此方法需要假設反應變數的分配,再利用費雪訊息矩陣估計變異數矩陣,並利用Wald 檢定統計量之漸進分佈估計統計檢定力。但當模型假設錯誤時,所得到的費雪訊息矩陣基本上是不正確的。本文之目的在於利用拔靴法來估計當模型假設錯誤時正確的變異數矩陣,再利用Wald 檢定統計量之漸進分佈估計出正確的統計檢定力。
    Lyles et al. (2007) proposed an expanded data set method for calculating testing power in the setting of generalized linear models. This approach requires the Fisher information matrix in order to evaluate the Wald test statistic.
    We recommend using the Bootstrap methodology to calculate a robust version of the Fisher information matrix which remains legitimate under model misspecification. Hence, one can estimate the power of the test statistics without making distributional assumptions.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML648View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明