English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41632545      線上人數 : 3701
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/60933


    題名: 基於匹配代價曲線特徵之遮蔽偵測之研究;A Study on Occlusion Detection Using Features of Matching Cost Curves
    作者: 周雅婷;Chou,Ya-ting
    貢獻者: 通訊工程學系
    關鍵詞: 立體視覺匹配;遮蔽偵測;匹配代價曲線;曲線配適;stereo matching;occlusion detection;matching cost curve;curve fitting
    日期: 2013-07-25
    上傳時間: 2013-08-22 12:07:07 (UTC+8)
    出版者: 國立中央大學
    摘要: 影像的遮蔽偵測為電腦視覺領域的重要研究課題,本論文提出利用匹配代價曲線特徵以進行遮蔽偵測。本論文方案可分成四個步驟,第一部分找出曲線上最低點的左與右有效區域。第二部分以變異數(variance)擷取曲線特徵,再區分為左右變異數較高之T+T區域,及至少有一區為變異數較低之非T+T區域。針對此兩種區域,第三部份各進行不同的遮蔽偵測方案。由於此兩個遮蔽偵測的方法在遮蔽區域誤判率較高,故針對遮蔽區域再使用另一以匹配影像曲線為基礎且結合geometry-based uniqueness constraint (MC-GUC)之遮蔽方案確認,以增強偵測準確率,減少非遮蔽區域之偵測誤判。第四部份,我們結合跟形像學(morphological image processing)改進遮蔽圖,以提高遮蔽偵測準確率。本論文方案相較於MC_GUC,可有效降低非遮蔽區域之遮蔽誤判平均達5.55%,而整體準確率也能提升1.96%。
    Occlusion detection is important for applications of computer vision. Thus, this thesis proposes an occlusion detection scheme using features of matching cost curves. The proposed scheme can be divided into four steps. First, we find the left and right effective regions around the disparity that has the lowest cost of the matching cost curve. Secondly, based on the variances of the left and right effective regions, a matching cost curve can be divided into either a T + T region, having large variances in both left and right effective regions, or a non-T + T region, having small variance on at least one effective region. Accordingly, the third part of the proposed scheme applies two different occlusion detection methods on these two kinds of regions. Since the aforementioned occlusion detection methods have high false positive rate in occluded regions, we use another matching cost based occlusion detection algorithm that combines with geometry-based uniqueness constraint (MC-GUC) to enhance detection accuracy and reduce errors on non-occluded regions simultaneously. Finally, we use morphological image processing to improve the accuracy of occlusion map. Compared with MC_GUC, the proposed scheme can effectively reduce error rate around an average of 5.55% on non-occluded regions, while the overall detection accuracy can be improved around 1.96%.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML594檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明