摘要: | 加熱器為MOCVD設備中的關鍵零組件,本論文以Veeco D-180內部加熱系統作為研究目標,為了使加熱後載台表面溫度分佈均勻,總共進行八項數值分析,分別是二區段加熱片陣列形狀分析、載台材料分析、間距分析(加熱片與載台之間距離)、均溫板分析、三區段加熱片分析、載台轉速及氫氣流量分析、保護板分析、最佳化加熱器分析。整合以上實驗結果發現顯著影響載台表面溫度分佈的有:載台材料分析、均溫板分析及三區段加熱片分析。 藉由以上分析,最佳化加熱器設定參數條件有:(1) 載台材質選用碳化矽(2) 間距為4 mm(3) 加入鉬均溫板(4) 以原本D-180加熱片為基礎改良成三區段加熱片(5) 載台轉速200 rpm(6) 氫氣流量30 slm(7) 加入保護板(8)功率設定。最後,從加熱器模擬分析結果可得到,加熱器載台表面溫差4.1 ℃,載台上單一晶圓表面溫差只有2.4 ℃,載台表面溫度均勻度更只有0.09 %,成功模擬設計出最佳化MOCVD 高溫加熱系統。 The heater is a key component in MOCVD reaction chamber. The goal of the simulation results can be applied to inside heating system of Veeco D-180. In order to keep the susceptor surface temperature to be unformed, this study has completed eight analyses: two-heating zones analysis, susceptor material analysis, distance analysis (between the filament and the susceptor), vapor chamber analysis, three-heating zones analysis, susceptor rotation and hydrogen inlet flow analysis, shield board analysis, and optimal heater design analysis. It is found that susceptor surface temperature is influenced mostly by the results from susceptor material analysis, vapor chamber analysis, and three-heating zones analysis. From these analyses, the optimal conditions of heater design can be obtained from the results based on susceptor material (SiC), distance (4 mm), vapor chamber (molybdenum), three heating zones, susceptor rotation (200 rpm), hydrogen inlet flow (30 slm), adding shield board and power inputs settings for this key component. Finally, the best results from these analyses are the temperature difference of susceptor surface 4.1℃, the temperature difference of wafer surface 2.4℃, and the susceptor surface temperature uniformity 0.09%. The study can demonstrate successfully that the simulated and optimal design of MOCVD high temperature heating system can be received by using numerical analysis. |