English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23691473      Online Users : 814
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/61466

    Title: 非反掃描式平行接收之雙光子螢光超光譜顯微術;Non-de-scanned two-photon fluorescence hyperspectral microscopy with parallel recording
    Authors: 呂喬聖;Lu,Chiao-Sheng
    Contributors: 光電科學與工程學系
    Keywords: 超光譜影像;雙光子螢光顯微術;非反掃描;光譜分析
    Date: 2013-08-28
    Issue Date: 2013-10-08 15:12:58 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 分子影像在生醫工程中是一項重要的技術。其方法可以分類為兩種:一種為以非光學為基礎的技術,另外一種則是以光學為基礎的技術,然而,後者可以擁有低侵入性和高影像解析度。
    Molecular imaging is a popular technique in biomedical engineering. It can be classified into two methods, one is non-optics–based and the other one is optics-based. However, the latter can provide non-invasive investigation and better spatial resolution.
    Fluorescence emission spectrum provides valuable information of molecules and plays an important role in molecular imaging. However, the emission spectrum overlap of different molecules usually causes serious crosstalk which would lead to errors in molecular imaging. To solve this problem, hyperspectral imaging techniques are developed and used to record both the spatial and spectral information of the molecules simultaneously.
    We developed a two-photon hyperspectral microscopy (TPHM) based on the laser-scanning point excitation, non-de-scanned, and parallel recording geometry. Integrated with the optical sectioning power and higher penetration depth of the two-photon microscopy, this system is suitable for thick tissue or in vivo imaging. The non-de-scanned geometry helps to increase the collection efficiency, while the parallel recording of the spatial-spectralinformation with a 2D CCD can improve the frame rate and spectral resolution.
    In this thesis, the architecture and the experimental results of this hyperspectral microscopic system will be described in details. The characteristics of this system was demonstrated by using mixed fluorescence microspheres and fresh Epipremnum aureum leaves as samples.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明