English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41633894      線上人數 : 3969
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/61554


    題名: 結合交易點預測之動態投資組合管理系統;Dynamic Portfolio Management with Trading Signal Prediction
    作者: 黃俞翔;Huang,Yu-hsiang
    貢獻者: 資訊工程學系
    關鍵詞: 投資組合;交易訊號預測;portfolio management;trading signal prediction
    日期: 2013-08-07
    上傳時間: 2013-10-08 15:22:07 (UTC+8)
    出版者: 國立中央大學
    摘要: 投資組合管理系統旨為將有限的資金,在眾多投資標的中,做有效的配置,並賺取更多的報酬,其獲利的兩大關鍵,在於進出場時機判斷及資產的配置。過去大部分研究皆針對特定的功能,如交易訊號的預測、資產的配置、投資目標的設定。然而實際投資時,需要這些功能同時運作,並相互合作,才能真正獲利,因此本研究結合Trading signal prediction[9]、Time Invariant Portfolio Protection[9]、Optimal Dynamic Asset Allocation[20],形成一投資組合管理系統。我們以固定明確的期望報酬作為投資目標,每次重新配置時,以最可能達到目標報酬的方式選擇投資標的;投資過程中並結合資產配置機制,使投資組合在資產有效運用下,兼具資產保護的特性。我們藉由轉折點切割股價,利用後傳遞類神經網路學習並預測交易訊號,作為進出場時機點判斷及投資項篩選。同時本研究針對交易訊號轉化方式,提出新的計算方法,以解決原方法中在實用時會遭遇到的最佳化問題。實驗結果顯示,本研究提出的交易訊號轉化方式,解決原方法在實作時所需參數調整的問題,又能取得與原方法參數最佳化後相似的投資效果;另外實驗證明本研究之投資組合管理系統,在市場下跌時,利用資產保護機制,可減少投資組合資產的損失,但也可能造成市場上升時,投資組合獲利不及市場。為解決固定報酬目標對於獲利的限制,當投資組合達到階段性投資目標時,系統將設定新一輪的投資目標,持續投資以克服市場上升時獲利不佳的情況。實驗顯示,此項措施在長期投資中,藉由設定適當的報酬率,可達到更高的投資報酬。
    The goal of portfolio management is to allocate the limited money into multiple securities effectively to earn more money. The two key factors of obtaining high profit are “the trading time” and “asset allocation”. Most of the past researches focus on one specific problem, for example, trading signal prediction, asset allocation, adaptive investment goal setting etc. But in real investment, investors need solutions for all these problems to achieve investment goal. This research combines trading signal prediction [9], Time Invariant Portfolio Protection [10], Optimal Dynamic Asset Allocation [20] into a portfolio management system. In the first part, we use turning points to partition the stock price, and use Back-propagation neural network (BPNN) to learn and predict the trading signal for each stock. We propose a new way to calculate the trading signal to avoid parameter tuning required in [9]. The second part is asset allocation. With asset protection mechanism (TIPP), we set an explicit ROI as the investment goal. We then allocate money for investment target for their probability to reach the investment goal in each rebalance. The experiment shows that the new way to calculate trading signal has similar performance with the original method but avoids the parameter tuning problem. Furthermore, with asset protection mechanism, our portfolio management system would receive less damage in encountering bear market. However, the fixed investment return goal would limit the profit in bull market. Therefore, we start a new round when the portfolio reaches the investment goal, and successfully makes the portfolio management system conquer the problem in bull market. For long-term investment, this mechanism could get better performance by setting appropriate return rate.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML553檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明