中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/61613
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41642665      Online Users : 1363
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/61613


    Title: 以??經網?為基礎之教導機械人模仿人?動作的機制;A Neural-Network-based Mechanism for Teaching Robots to Imitate Human Actions
    Authors: 林士傑;Lin,Shih-Chieh
    Contributors: 資訊工程學系
    Keywords: 最佳化;群體智慧;模仿機器人;模仿中學習;??經;SOM;optimization;swarm intelligence;imitating robot;imitating robot;neural networks;SOM,
    Date: 2013-08-30
    Issue Date: 2013-10-08 15:23:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 個人化機器人被設計?在居家環境中能協助或娛?人們,並且被期待
    能夠與人們互動,因此,越?越吸引?自各?域的人們的注意?,而機器
    人能夠模仿人?動作則被視為能與人?在動作上互動的第一步。本篇?文
    提出一個以??經網?為基礎的機制,得以讓機器人即時模仿人?動作。
    主要由三個步驟組成:1)建?人體基本動作單元、2)針對每個人體基本動
    作單元,?用最佳化演算法找出相對應的機械人關節的馬達角?、3)?用
    前述步驟之結果,設計以??經網?為基礎的機械人關節角?控制器。
    首先由收集的多種人體動作序?,?用分群演算法找出基本動作單
    元。由於人體基本動作單元?未知,我們採用非監督式的自我組織特徵映
    射圖(SOM)方法,藉由人體動作資?的?樸分佈,找出基本人體動作單元。
    第二步是針對這些基本動作單元,找出對應的機械人關節馬達角?,使得
    機器人的能作出與人體基本動作最相似的動作,此問題可被視為一個在高
    維?空間中尋找一個最佳解(亦即最佳之馬達角?組合)的最佳化問題,會
    隨著機器人之馬達?目的增加而大大增加其複雜?。針對此最佳化問題,
    本?文特別發展?一個以鴿子覓食機制為構想的最佳化演算法─鴿子群體
    最佳化演算法(Dove Swarm Optimization),希望透過此鴿子群體最佳化演
    算法得以快速找到好的機械人馬達關節角?組合。第三步則是以上述找到
    之機械人馬達關節角?對應之資?集作為訓?資?,訓?一個監督式的?
    ?經網?做為機械人關節角?控制器。本?文比較多層感知機網?以及放
    射?基底函?網?的結果,最後選用多層感知機網?作為控制器。
    在實驗結果部份,本?文與線性對應(linear mapping)的方法比對差
    ??、方均根誤差以及時間,結果發現整體效能平均提升約10%,而對於在
    線性對應方式中表現特別?好的人體姿態,其改進比?則為13%,而在線性
    對應方式中已表現很好的姿態則無太大之改進。
    Personal service robots are designed to assist or entertain people in
    domestic environments and expected to engage in social-human interactions

    therefore, they are gaining more and more attentions from many different fields.
    A robot that can imitate human actions can be regarded as the first step for
    interacting with humans from the viewpoint of actions. This dissertation presents
    a neural-network-based imitation mechanism for teaching a robot to imitate
    human actions. The proposed mechanism involves in the following three steps: 1)
    the generation of basic human motion units, 2) the mapping between basic
    human motion units and robot joint motor angles, and 3) the construction of a
    NN-based controller.
    First of all, we collected several human motion sequences consisted of
    many different human activities and then used a clustering algorithm to cluster
    the collected human actions into a set of basic human motion units. Since the
    number of basic human motion units is unknown, we decided to adopt the
    self-organized feature map (SOM) as the clustering tool to generate basic human
    motion units. Secondly, for each basic human action unit, we need to find a
    combination of robot joint motor angles to make the robot pose be similar to the
    corresponding human pose. The problem can be regarded as an optimization
    problem of which goal is to find an optimized solution (i.e., the best
    combination of robot joint motor angles) in a multi-dimensional space. The
    complexity of the optimization problem greatly increases as the number of robot
    joint motors. To provide a good solution to the optimization problem, this
    dissertation also proposes the new optimal algorithm called dove swarm
    optimization (DSO), which is motivated by the doves’ foraging behavior. The
    proposed DSO is adopted to affectively find the best combination of robot joint
    motor angles corresponding to each basic human motion unit. In the third step,
    the data set generated in the previous step is adopted as the training data set to
    construct a NN-based controller. From our simulations, we found that controller
    performance achieved by the multilayer perceptrons (MLP) outperformed the
    radial basis function network (RBFN)
    therefore, we decided to adopt the MLP
    to construct the NN-based controller.
    The proposed mechanism was compared with the most straightforward
    linear mapping method based on the root mean squared error and computational
    time. In simulation results, we found that the proposed imitation mechanism
    could promote the performance about 10% on average. The worst one hundred
    basic human actions achieved by the linear mapping method, the imitation
    performance could be improved to 13% by our mechanism. As for the best one
    hundred basic human actions achieved by the linear mapping method, our
    imitation mechanism did not clearly improve the imitation performance.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML653View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明