English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 23146725      Online Users : 388
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/61668

    Title: An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws
    Authors: 張嘉宏;Chang,Chia-Hung
    Contributors: 數學系
    Keywords: 黎曼問題;Hyperbolic systems of conservation laws;degenerate hyperbolic balance laws;shcok waves;rarefaction waves;Riemann problem
    Date: 2013-08-20
    Issue Date: 2013-10-08 15:26:15 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 於此篇文章中我們考慮的是一個2 × 2退化的雙曲型守恆律系統,而我們考慮的這一個系統它的第二行方程式缺乏了對時間微分的項。本篇文章主要是研究這個系統的黎曼問題。我們將介紹一種疊代方式去建構這個系統的弱解。其中這些弱解的建構過程中是依據特徵線方法、Rankine-Hugonniot 條件以及分析上疊代方式而獲得。
    In this thesis, we consider a 2 × 2 degenerate hyperbolic system of conservation laws whose second equation does not have the term related to the time-derivative of unknowns. The Riemann problem of such conservation laws is studied. We introduce an iteration scheme to construct the weak solutions of the Riemann problem. The weak solutions are obtained based on the characteristic method, Rankine-Hugoniot condition for discontinuous solutions and the iteration to the elementary waves for homogeneous systems.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明