English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119578      線上人數 : 1466
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/61768


    題名: 複合概似函數有效性之探討;Efficiency of the Composite Likelihood
    作者: 陳婉貞;Chen,Wan-chen
    貢獻者: 統計研究所
    關鍵詞: 複合概似函數;多維負二項分配;費雪訊息;Bartlett's 第二等式;集群資料;相關係數;Composite likelihood;Multivariate negative binomial distribution;Fisher information matrix;Bartlett's second identity;clustered data;Correlation coefficient
    日期: 2013-10-03
    上傳時間: 2013-11-27 11:30:33 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,複合概似函數方法 (Composite Likelihood) 引起高度關注。原因在於複合概似函數方法對於分析不易獲得聯合分布函數的相關性資料,既便利又有效。無庸置疑的,多維常態分配經常被當作建構複合概似函數的核心模式。
    本論文納入多維負二項分配為核心模式來建構複合概似函數,對於相關性資料的迴歸分析,證明此核心模式所建構的複合概似函數相較於多維常態分配是更好的選擇。此外,多維負二項複合概似函數方法亦能得到更有效的迴歸參數估計量。
    集群內相關性的估計對於改善有效性是有助益的。本文最後,根據錯誤的模型假設(如用二項分配模式配適相關二元資料或多項分配模式配適相關的有序資料)所導致Bartlett第二等式錯誤的性質,提出一個估計集群內相關性的新方法。此方法可應用於如:邏吉斯迴歸模型、對數迴歸模型、比例勝算迴歸模型或其他適當的連結函數,且可利用有提供na?ve及sandwich共變異數矩陣的統計軟體來簡單的執行此估計方法。
    The method of composite likelihood (CL) has attracted a lot of attentions in recent years. This expedient method is convenient for analyzing correlated data whose joint distribution is difficult to model or unattainable. Without surprises, multivariate normal has been the sole model utilized to fabricate composite likelihood functions
    In this thesis we incorporate the multivariate negative binomial distribution as the core model to build up composite likelihoods. We will show that using the negative binomial model to formulate a composite likelihood might be a better choice for regression analysis of general correlated data. The negative binomial-based composite likelihood (NB-CL) will be demonstrated to be more efficient than the usual normal-based composite likelihood (NM-CL).
    To further improve the efficiency, a sensible estimation of the intra cluster correlation (ICC) is often beneficial for this purpose. To this end, we introduce a new tool for inference making for ICC between correlated binary data and correlated ordinal data. The creation of this method is founded upon the violation of Bartlett’s second identity when adopting the binomial distributions to model cluster binary data and the multinomial distributions to model cluster ordinal data. The new methodology applies to any sensible link functions that connect the success probability and covariates. One can easily implement the procedure by using any statistical software providing the na?ve and the sandwich covariance matrices for regression parameter estimates.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1313檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明