中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/61772
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 40889554      Online Users : 1293
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/61772


    Title: 特徵挑選方法和分類器在財務危機預測問題中比較;Comparison of Feature Selection Approach and Classifier in Financial Crisis Prediction Problem
    Authors: 吳信廷;Wu,Hsin-ting
    Contributors: 資訊工程學系
    Keywords: 特徵挑選;財務危機預測;分類器;Feature selection;Financial Crisis prediction;wrapper method;filter method;classifier
    Date: 2013-09-12
    Issue Date: 2013-11-27 11:32:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 財務危機預測的問題長久以來都是一個重要且常被廣泛討論的主題,吸引了世界各地的投資者和研究學者的關注。發展出好的財務危機預警模型可以有效幫助,投資者銀行決策。影響整個財務危機預警流程主要有三個議題分別是特徵挑選(Feature selection)、分類器演算法(Classifier algorithm)和資料集(Dataset)。過去由前人的研究可發現,是否要做特徵挑選方法會依據分類器的特性來判定。本研究專注在以準確率和Type I作為指標,探討常用的分類器是否需要做特徵挑選,最後推薦一套方法針對未來資料集可以縮小搜尋的範圍和時間。
    Financial distress problem has been important and widely studied topic. Financial distress prediction is receiving increasing attention of stakeholders and researchers in the worldwide. It is helpful for stakeholders and researchers that developing a great ?nancial distress prediction model. There are three important factors influencing financial distressed prediction. The first one is feature selection, the second one is classifier algorithm, and the third one is dataset. It can find that it is useful to use feature selection in different kinds of datasets in previous studies. The aim of this research is make sure that what kinds of classifier need to use feature selection to have the better accuracy, and also recommend a way that it can reduce a lots of time to search the better combination of feature selection approach and classifier in the new datasets.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML519View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明