English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78937/78937 (100%)
造訪人次 : 39813099      線上人數 : 638
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/62209


    題名: 黏性土坡耐震穩定性之離心機與數值模擬;Centrifuge Modelling and Numerical Simulation on Seismic Slope Stability of a Cohesive Embankment
    作者: 黃俊鴻
    貢獻者: 國立中央大學土木工程學系
    關鍵詞: 土木水利工程;防災工程
    日期: 2012-12-01
    上傳時間: 2014-03-17 11:19:49 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10101~10112;CENTRIFUGE MODELLING AND NUMERICAL SIMULATION ON SEISMIC SLOPE STABILITY OF A COHESIVE EMBANKMENT The main objective of the present study is to evaluate the yield acceleration and seismic residual deformation of a given slope made of clay. Yield acceleration is defined as the minimum pseudo-static acceleration required to produce a significant deformation of a slope. Seismic residual deformation is an index to represent the degree of embankment instability caused by seismic loading. This project plans to perform centrifuge modelling to study the yield acceleration and seismic residual deformation of a cohesive slope when subject to earthquake loading using the dynamic centrifuge. Different cohesive slope model will be prepared with clayey soils of different consistency. A number of real earthquake acceleration histories will be selected to be the input motions to shake the model slope. Dynamic responses of model slope will be monitored by arrays of accelerometers, piezometers, and LVDTs. Test procedure will be arranged to increase peak acceleration step by step to find out a minimum value beyond which the slope starts to deform significantly. The minimum value can be defined as yield acceleration. The deformation pattern and failure surface will be recorded by mesh mark. It is expected that the consistency of clayey soil plays an important role in slope stability. The dynamic stability also depends upon the earthquake intensity and duration. The intensity can be represented by a peak acceleration and the duration is denoted by an equivalent loading cycle. Thus an experimental relationship among permanent displacement, yield acceleration, consistency of clayey soil, slope geometry and earthquake loading is expected to be obtained from the limited test results. This project also plans to conduct numerical modelling to implement experimental approach. Two kinds of numerical approach will be adopted to model the dynamic response of a cohesive embankment. One is using finite difference software FLAC2D and the other is the Newmark‘s approach combined with a slope stability analysis method of slices, such as Bishop’s simplified method. These two numerical methods will be calibrated and verified with the results of dynamic centrifuge test and earthquake cases of India and Taiwan. After calibration, a great number of numerical tests will be performed to establish the relationships among permanent displacement, yield acceleration, consistency of clayey soil, slope geometry and earthquake loading. These relationships will be refined and simplified into simple design charts and tables so that the research results can be utilized in engineering practice.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[土木工程學系 ] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML312檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明